idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
22.02.2021 09:03

Carpets of moss help stop erosion

Antje Karbe Hochschulkommunikation
Eberhard Karls Universität Tübingen

    Tübingen geoscientists show how biological soil crusts prevent soil from being washed away

    Every year, billions of tons of valuable soil are lost worldwide through erosion, much of it deposited in bodies of water that fill with sand or silt as a result. Soil losses measured in Germany range from 1.4 to 3.2 tons per hectare per year; in extreme weather, the figure can be as high as fifty tons. Geoscientists at the University of Tübingen have now shown how biological soil crusts provide a protective layer against erosion. Natural “carpets” of bacteria, mosses, lichens, fungi and other organisms bind soil particles into coherent layers, or crusts.

    Biocrusts are only a few millimeters thick, but they stabilize the soil surface and protect it from erosion by rain and wind. So far, they have been studied mainly in dry regions, where they are particularly important because they store water and serve as protection against wind erosion and dust trapping. Under the direction of Dr. Steffen Seitz of Soil Science and Geomorphology, the Tübingen scientists investigated the development of biological soil crusts on recently used skid trails in the Schönbuch nature park near Stuttgart in southwest Germany.

    These paths created by logging machines, along with forest roads and logged areas, are preferred habitats for biocrusts. Although they cause disturbance to the forest floor, they have the advantage of concentrating forestry operations on predetermined routes and protecting the forest areas in between.

    The Tübingen team measured the soil composition on the trails and at other points on the site at different times over a year, and conducted experiments with rain simulators. The results show how important biocrusts are for soil conservation. “Soil erosion on the trails is, on average, thirteen times higher than on undisturbed forest soil across all locations and times of measurement,” says Professor Thomas Scholten, who supervises the project at Soil Science and Geomorphology. At the same time, however, the forest soil’s protective mechanisms were revealed. “For example, biological soil crusts that reduce erosion settled in the trails soon after they were no longer driven on.”

    These developed very differently depending on their location, especially the mosses, which play a particularly important role in erosion control. Their share of the crust communities ranged from five to fifty percent, depending on the measuring point. The diversity of the moss species involved also varied greatly, due primarily to chemical differences in the soil. In general, the greater the diversity of species involved, the better the erosion protection provided by the biocrusts. They were also found to provide a foundation for further plant growth. During the summer months, many biocrusts on the trails were replaced by taller vegetation such as rushes, grasses, or tree seedlings, which also provided good erosion control.

    In another experiment in cooperation with the Stuttgart-based company Reinhold Hummel, the researchers spread some trails with mats of a moss species grown in the greenhouse. Not only can that moss store a lot of water, it also proved to be the most vigorous and resistant of the 24 moss species tested. Moreover, since it can be applied like sod, it is particularly suitable for practical environmental protection. Most of these moss mats in the Schönbuch Nature Park have taken root after one year. “The research results we have obtained so far show that biocrusts are well suited for repairing and stabilizing surfaces. This is not only true for forest soils; mining landscapes and embankments are also possible areas of application,” says Thomas Scholten.

    High-res images for download: http://www.pressefotos.uni-tuebingen.de/20210222_Bodenkrusten.zip
    Please note the credits.


    Wissenschaftliche Ansprechpartner:

    Professor Dr. Thomas Scholten
    Department of Geoscience
    University of Tübingen
    +49-(0)7071-2974064
    +49-(0)1520-1526935
    thomas.scholten@uni-tuebingen.de

    Dr. Steffen Seitz
    Department of Geoscience
    University of Tübingen
    +49-(0)7071-2977523
    steffen.seitz@uni-tuebingen.de


    Originalpublikation:

    -Corinna Gall, Martin Nebel, Thomas Scholten, Sonja M. Thielen, Steffen Seitz. On the effect of different moss species on soil erosion, percolation and carbon relocation. HS1.1.5 – Experimental hydrology and hydraulics in Geosciences. Geophysical Research Abstracts Vol. 22, EGU2021-8389 (2021).
    -Sonja M. Thielen, Corinna Gall, Martin Nebel, Thomas Scholten, Steffen Seitz. Soil-Moss-Relations: The path of water from dripping to infiltration. HS10.5 – Water and solutes fluxes affected by vegetation canopies: patterns, processes, and interactions at the soil-atmosphere interface. Geophysical Research Abstracts Vol. 22, EGU2021-8390 (2021).


    Bilder

    Favorable moss species grown in the greenhouse. This moss was the most effective at erosion control.
    Favorable moss species grown in the greenhouse. This moss was the most effective at erosion control.
    Photo: Corinna Gall

    A rain simulator was used in Schönbuch nature park to measure how soil erodes in skid trails.
    A rain simulator was used in Schönbuch nature park to measure how soil erodes in skid trails.
    Photo: Corinna Gall


    Merkmale dieser Pressemitteilung:
    Journalisten
    Biologie, Geowissenschaften, Umwelt / Ökologie
    überregional
    Forschungsergebnisse
    Englisch


     

    Favorable moss species grown in the greenhouse. This moss was the most effective at erosion control.


    Zum Download

    x

    A rain simulator was used in Schönbuch nature park to measure how soil erodes in skid trails.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).