idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
24.02.2021 17:00

Beschleunigerphysik: Experiment zeigt neue Optionen für Synchrotronlicht-Quellen auf

Dr. Antonia Rötger Kommunikation
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

    Ein internationales Team hat mit einem aufsehenerregenden Experiment gezeigt, wie vielfältig die Möglichkeiten von Synchrotronlicht-Quellen sind. Beschleunigerexperten des Helmholtz-Zentrums Berlin (HZB), der Physikalisch-Technischen Bundesanstalt (PTB) und der Tsinghua Universität in Beijing haben der Metrology Light Source der PTB Elektronenpakete mit einem Laser so manipuliert, dass diese intensive Lichtpulse mit einer laserartigen Qualität emittierten. Mit dieser Methode wären spezialisierte Synchrotronstrahlungs-Quellen potenziell in der Lage eine Lücke im Arsenal verfügbarer Lichtquellen zu füllen und die Vorausetzung für industrielle Anwendungen zu bieten.

    Die modernsten Lichtquellen für die Forschung basieren auf Teilchenbeschleunigern. Es handelt sich um große Anlagen, in denen Elektronen auf nahezu Lichtgeschwindigkeit beschleunigt werden, um dann Lichtpulse in einer besonderen Qualität abzugeben. In speicherringbasierten Synchrotronstrahlungs-Quellen zirkulieren die Elektronenpakete über Milliarden Umläufe in einem Ring und erzeugen in dessen Ablenkmagneten eine rasche Folge von sehr hellen Lichtpulsen. In Freien-Elektronenlasern (FELs) dagegen werden die Elektronenpakete linear beschleunigt und geben dann einen einzelnen superhellen Lichtblitz mit laserartiger Qualität ab. Sowohl Speicherring-Quellen als auch FELs haben in den letzten Jahren Fortschritte in vielen Bereichen ermöglicht, von tiefen Einblicken in biologische und medizinische Fragestellungen über die Materialforschung und Technologie-Entwicklung bis hin zur Quantenphysik.

    Nun hat ein deutsch-chinesisches Team gezeigt, dass sich an einer Synchrotronstrahlungs-Quelle ein Muster von Pulsen erzeugen lässt, das die Vorteile von beiden Systemen vereinigt: Es liefert kurze, intensive „Mikropakete“, welche Strahlungspulse mit einer laserartigen Qualität (wie bei FELs) erzeugen, die aber außerdem dicht aufeinanderfolgen können (wie bei Synchrotronlicht-Quellen).
    Die Idee wurde vor rund zehn Jahren unter dem Schlagwort „Steady-State Microbunching (SSMB)“ von dem führenden Beschleunigertheoretiker Alexander Chao und seinem Doktoranden Daniel Ratner von der Stanford University entwickelt: Der Mechanismus soll es auch in Speicherringen ermöglichen, Lichtpulse nicht nur mit hoher Wiederholrate, sondern auch mit laserartiger Qualität („kohärente Strahlung“) zu erzeugen. Diese Überlegungen hatte der junge Physiker Xiujie Deng von der Tsinghua University, Beijing in seiner Promotion aufgegriffen und theoretisch weiter untersucht. Chao stellte 2017 den Kontakt zu den Beschleunigerphysikern am HZB her, die neben der Weichröntgen-Quelle BESSY II am HZB auch die Metrology Light Source (MLS) an der PTB betreiben. Die MLS ist als erste Lichtquelle weltweit schon vom Design her auf den Betrieb im sogenannten „Low Alpha-Mode“ optimiert: dabei können die Elektronenpakete stark verkürzt werden. Seit über 10 Jahren entwickeln die Forscher dort diesen speziellen Operationsmodus stetig weiter. „Nur deshalb konnten wir nun an der MLS die herausfordernden physikalischen Voraussetzungen erfüllen, um das SSMB-Prinzip experimentell zu bestätigen“, erklärt Markus Ries, Beschleunigerexperte am HZB.

    „Die Theoriegruppe innerhalb des SSMB-Teams hatte in der Vorbereitungsphase die physikalischen Randbedingungen für eine optimale Einstellung der Maschine definiert. Dadurch konnten wir die neuartigen Maschinen-Zustände an der MLS erzeugen und zusammen mit Deng soweit optimieren, bis wir die gesuchten Pulsmuster nachweisen konnten“, berichtet Jörg Feikes, Beschleunigerphysiker am HZB. Die HZB- und PTB-Experten benutzten einen optischen Laser, dessen Lichtwelle räumlich und zeitlich präzise synchronisiert zu den Elektronenpaketen in der MLS eingekoppelt wurde. Dadurch wurden die Energien der Elektronen in den Paketen moduliert. „Das führt dazu, dass sich die einige Millimeter langen Elektronenpakete nach exakt einer Runde im Speicherring in sogenannte Mikrobunche aufspalten (nur 1 µm lang), und dann Lichtpulse abgeben, die sich kohärent verstärken wie in einem Laser“, erläutert Jörg Feikes. „Der experimentelle Nachweis der kohärenten Strahlung war dabei alles andere als einfach, aber die PTB Kollegen haben eine innovative optische Detektionseinheit entwickelt, mit der der Nachweis gelang.“

    „Der Clou von künftigen SSMB-Quellen ist, dass sie laserartige Strahlung auch jenseits des sichtbaren Spektrums von "Licht" erzeugen, also etwa im extremen ultravioletten Bereich (EUV)", kommentiert Prof. Mathias Richter, Abteilungsleiter an der PTB. „Im Endausbau könnte eine SSMB-Quelle Strahlung einer neuen Qualität liefern. Die Pulse sind intensiv, fokussiert und schmalbandig, sie vereinigen sozusagen die Vorteile von Synchrotronlicht mit den Vorteilen von FEL-Pulsen“, betont Ries. Und Feikes ergänzt: „Diese Strahlung ist potenziell für industrielle Anwendungen geeignet. In der Nähe von Peking ist bereits die erste Lichtquelle basierte auf SSMB speziell für die Anwendung der EUV-Lithographie konkret in Planung“.


    Wissenschaftliche Ansprechpartner:

    Dr. Jörg Feikes, Dr. Markus Ries, Helmholtz-Zentrum Berlin.
    joerg.feikes@helmholtz-berlin.de und markus.ries@helmholtz-berlin.de


    Originalpublikation:

    25.02.2021, Nature, Volume 590, Issue 7847
    Experimental demonstration of the mechanism of steady-state microbunching
    Xiujie Deng, Alexander Chao, Jörg Feikes, Arne Hoehl, Wenhui Huang, Roman Klein, Arnold Kruschinski, Ji Li, Aleksandr Matveenko, Yuriy Petenev, Markus Ries, Chuanxiang Tang and Lixin Yan
    10.1038/s41586-021-03203-0


    Bilder

    Ein Laser moduliert die Elektronenpakete, die sich in Mikropäckchen aufspalten. Nach weiteren Runden im Speicherring überlagern sich deren Lichtpulse kohärent, so dass sie Laser-artige Qualität besitzen.
    Ein Laser moduliert die Elektronenpakete, die sich in Mikropäckchen aufspalten. Nach weiteren Runden ...

    Tsinghua University


    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wirtschaftsvertreter, Wissenschaftler
    Physik / Astronomie
    überregional
    Forschungs- / Wissenstransfer, Forschungsergebnisse
    Deutsch


     

    Ein Laser moduliert die Elektronenpakete, die sich in Mikropäckchen aufspalten. Nach weiteren Runden im Speicherring überlagern sich deren Lichtpulse kohärent, so dass sie Laser-artige Qualität besitzen.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).