idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
01.03.2021 09:08

Neue Talente von Graphen: Durchstimmbare Gitterschwingungen

Dr. Antonia Rötger Kommunikation
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

    Technologische Innovationen im letzten Jahrhundert basierten hauptsächlich auf der Kontrolle von Elektronen oder Photonen – im aufstrebenden Forschungsfeld der Phononik geraten nun auch die Schwingungen des Kristallgitters, die Phononen, ins Blickfeld. Ein Team der Freien Universität Berlin und des Helmholtz-Zentrums Berlin hat Graphen mit einem Helium-Ionen-Mikroskop mit einem Lochmuster versehen und dadurch einen phononischen Kristall erzeugt, dessen Resonanzfrequenz sich erstmals in einem breiten Bereich durchstimmen lässt. Dies ist ein echter Durchbruch, der nun im Fachjournal Nano Letters publiziert ist.

    Ohne Elektronik und Photonik gäbe es keine Computer, Smartphones, Sensoren und die Informations- und Kommunikationstechnologien wären nicht entstanden. In den kommenden Jahren könnte das neue Feld der Phononik diese Optionen noch beträchtlich erweitern. Denn nun sind auch Gitterschwingungen (Phononen) von Festkörpern ins Blickfeld der Forschung geraten. Um phononische Bauelemente zu realisieren, müsste man allerdings Gitterschwingungen genauso präzise steuern und kontrollieren können, wie es mit Elektronen oder Photonen möglich ist.

    Phononische Kristalle als Schlüssel

    Der Schlüsselbaustein hierzu ist ein phononischer Kristall, eine künstlich hergestellte Struktur, in der Eigenschaften wie Steifigkeit, Masse oder mechanische Spannung periodisch variieren. Es gibt bereits einige Kandidaten für phononische Bauelemente, die als akustische mechanische Qubits, Wellenleiter, Phononenlinsen und Vibrationsabschirmungen eingesetzt werden. Bisher operierten diese Systeme jedoch nur auf vorab festgelegten Schwingungsfrequenzen. Es war nicht möglich, die Schwingungsfrequenzen kontrolliert zu verändern.

    Graphen mit Lochmuster

    Nun hat ein Team der Freien Universität Berlin und am HZB erstmals konkret gezeigt, wie diese Kontrolle realisiert werden kann. Sie nutzten dafür Graphen, eine Kohlenstoff-Form, in der die Kohlenstoffatome sich zweidimensional zu einer wabenförmigen Struktur vernetzen. Mit einem fokussierten Strahl aus Helium-Ionen konnte das Team im Graphen ein periodisches Muster aus Löchern schneiden. Diese Methode steht am CoreLab CCMS (Correlative Microscopy and Spectroscopy) zur Verfügung. „Wir mussten den Prozess optimieren, um ein regelmäßiges Lochmuster in die Graphenfläche zu schneiden, ohne dass sich benachbarte Löcher berühren“, erklärt Dr. Katja Höflich, Gastforscherin am HZB und Gruppenleiterin am Ferdinand-Braun-Institut Berlin.

    Durchstimmbar von 50 MHz bis 217 MHz

    Jan N. Kirchhof, Erstautor der nun in Nano Letters publizierten Studie, hat die Schwingungseigenschaften dieses phononischen Kristalls berechnet. Seine Simulationen zeigen, dass in einem bestimmten Frequenzbereich keine Schwingungsmoden zugelassen sind. Die Fachleute bezeichnen dies als mechanische Bandlücke, ein in der Festkörperphysik bekanntes Konzept. Diese Bandlücke kann genutzt werden, um einzelne Moden zu lokalisieren und von der Umgebung abzuschirmen. Das Besondere hier: „Die Simulation zeigt, dass wir das phononische System schnell und gezielt durchstimmen können, von 50 Megahertz bis 217 Megahertz, indem wir durch eine angelegte elektrische Spannung mechanischen Druck generieren“, sagt Jan Kirchhof.

    Neue Anwendungen im Blick

    "Wir hoffen, dass unsere Ergebnisse das Feld der Phononik weiter vorantreiben. Wir erwarten, dass wir einige grundlegende physikalische Erkenntnisse gewinnen und Technologien entwickeln, die zu Anwendungen z.B. in ultrasensitiven Photosensoren oder sogar Quantentechnologien führen könnten", erklärt Prof. Kirill Bolotin, Leiter der FU-Arbeitsgruppe. In seiner Gruppe laufen bereits die ersten Experimente mit den neuen phononischen Kristallen aus dem HZB.


    Wissenschaftliche Ansprechpartner:

    Dr Katja Höflich
    katja.hoeflich@helmholtz-berlin.de


    Originalpublikation:

    Nano Letters 2021:

    Tunable Graphene Phononic Crystal; Jan N. Kirchhof, Kristina Weinel, Sebastian Heeg, Victor Deinhart, Sviatoslav Kovalchuk, Katja Höflich, and Kirill I. Bolotin

    DOI: 10.1021/acs.nanolett.0c04986


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wirtschaftsvertreter, Wissenschaftler
    Physik / Astronomie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).