Wissenschaftlern der Universität Rostock ist es gelungen, dreidimensionale Netzwerke für Photonen zu entwickeln. Diese neugewonnene Komplexität gibt Paaren von verschränkten Lichtteilchen vollkommen neue Freiheiten und macht sie für hochleistungsfähige Quantencomputer nutzbar. Die Forschungsergebnisse wurde im renommierten Fachjournal „Science Advances“ veröffentlicht.
Man gibt den Begriff Licht in eine Suchmaschine ein, klickt auf den Link zu Photonen und gelangt über die Einträge Photoelektrischer Effekt, Albert Einstein, Quantenphysik, Quantenteleportation zum Quantencomputer. „Natürlich käme man auch direkt vom Licht zur Quantenphysik“, bemerkt Professor Alexander Szameit. Mit seiner Gruppe führt der Physiker bahnbrechende Experimente zu eben jenen Themen an der Universität Rostock durch. Licht bietet eine Vielzahl an Einsatzmöglichkeiten: Materialbearbeitung, Augenoperationen und das Versenden gigantischer Datenmengen durch Glasfaserkabel stellen nur einen Bruchteil der photonischen Technologien dar, die aus der modernen Gesellschaft nicht mehr wegzudenken sind. „Und Licht kann auch schneller rechnen als unsere Computer“, ergänzt Szameit in Hinblick auf seine Grundlagenforschung zum optischen Quantencomputer.
Die anfängliche Suche hat Szameits Team ebenso im Fokus. Das Internet besteht aus einem riesigen Sammelsurium an Einträgen, die durch sogenannte Hyperlinks miteinander verbunden sind. Die Herstellung eines ebenso dichten Netzwerks stellt eine der bedeutendsten Herausforderungen für heutige Quantentechnologien dar. „Das World Wide Web aus Punkten und Verbindungen zu zeichnen ist kinderleicht. Man braucht dafür nur Stift und Papier – und sehr viel Geduld.“, scherzt der Professor hinsichtlich der schier unüberblickbaren Komplexität sozialer Netzwerke. Die technische Umsetzung für Quantennetzwerke ist noch weitaus anspruchsvoller. „Die Verbindungen sind das Problem“, so bringt Szameit die physikalischen Hindernisse auf den Punkt.
Die Rostocker Physiker können mithilfe lasergefertigter Schaltkreise die räumliche Ausbreitung von Lichtteilchen in Glaschips gezielt steuern. Nun ist es in Zusammenarbeit mit Wissenschaftlern aus Freiburg und Innsbruck gelungen die Polarisation – also die Schwingungsrichtung von Licht – als zusätzlichen Freiheitsgrad einzubeziehen. „Das ist ein waschechter Durchbruch. Wir haben für die Lichtteilchen eine zusätzliche Dimension gewonnen“ erklärt Szameit. Dr. Matthias Heinrich, Mitarbeiter im Team von Professor Szameit und Koautor, konkretisiert: „Das bedeutet, wir haben auf einen Schlag nicht nur doppelt so viele Punkte, sondern auch doppelt so viele Verbindungen für jeden einzelnen davon“.
Neben Design und Herstellung gehört auch die Erprobung der Strukturen zum experimentellen Repertoire des Teams. „Wenn alle Wege nach Rom führen, dann nimmt Licht auch alle Wege“, so skizziert Max Ehrhardt, Doktorand und Erstautor der Arbeit, das vielfältig einsetzbare Verhalten der Photonen in den maßgeschneiderten Netzwerken. „Photonen sind fast wie Menschen. Kaum haben sich Paare gefunden, kann man sie nur noch zu zweit antreffen“, ergänzt der Jungforscher humorvoll. Dieses Verhalten konnte das Team um Professor Szameit mit den neuartigen Netzwerken verändern. Sie haben gezielt Bereiche in den Netzwerken geschaffen, in denen die Photonenpaare nur einzeln anzutreffen sind. „Die zusätzlichen Wege geben den Photonen die Möglichkeit zum social distancing, aber auch dazu, wieder zueinander zu finden“, so fasst Professor Szameit die Experimente zusammen.
Trotz dieses bedeutenden Fortschritts in der Grundlagenforschung auf dem Gebiet der Quantenoptik und der integrierten Photonik sind noch einige Hürden zu nehmen, bis letztendlich lichtbasiert Quantentechnologien und neuronale Netzwerke erfolgreich Einzug in unser Leben nehmen können. Angesichts des rasanten wissenschaftlichen Fortschritts scheinen aber auch diese nach Science-Fiction klingenden Ziele bereits in greifbarer Nähe.
Die Arbeit wurde von der Deutschen Forschungsgemeinschaft (DFG), der Europäischen Union und der Alfried Krupp von Bohlen und Halbach-Stiftung gefördert.
Prof. Dr. Alexander Szameit
AG Experimentelle Festkörperoptik
Institut für Physik
Universität Rostock
Tel.: +49 381 498-6790
E-Mail: alexander.szameit@uni-rostock.de
Die Original-Veröffentlichung in „Science Advances“ ist unter DOI: 10.1126/sciadv.abc5266 verfügbar.
Lichtteilchen im 3D-Netzwerk: Photonen bewegen sich entlang der Verbindungsstränge durch komplexe Ne ...
Max Ehrhardt
University of Rostock
Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler, jedermann
Physik / Astronomie
überregional
Forschungsergebnisse
Deutsch
Lichtteilchen im 3D-Netzwerk: Photonen bewegen sich entlang der Verbindungsstränge durch komplexe Ne ...
Max Ehrhardt
University of Rostock
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).