idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
15.03.2021 12:27

Alle Eigenschaften von Atomkernen beschreiben

Mareike Hochschild Stabsstelle Kommunikation und Medien
Technische Universität Darmstadt

    Experimentelle Messungen am Elektronenbeschleuniger der TU Darmstadt bestätigen hauseigene theoretische Vorhersagen

    Im Rahmen der Entwicklung und Verbesserung experimenteller Messmethoden konnte ein internationales Forschungsteam unter Leitung der TU Darmstadt den extrem schnellen elektromagnetischen Zerfall eines angeregten Lithium-Isotops mit höchster Präzision vermessen. Die Daten zeigen, wie präzise an der TU mitentwickelte moderne Theorien der Kernkräfte die Wechselwirkung von Atomkernen mit elektromagnetischen Wellen vorhersagen können. Die Ergebnisse wurden jetzt im Journal Physical Review Letters veröffentlicht.

    In der Natur vorkommende Atomkerne bestehen aus Protonen und Neutronen, die durch die starke Wechselwirkung zusammengehalten werden. Eine moderne Theorie dieser „Kernkräfte“, die an der TU Darmstadt innerhalb des Sonderforschungsbereichs (SFB) 1245 „Atomkerne: Von fundamentalen Wechselwirkungen zu Struktur und Sternen“ entwickelt wird, hat das Ziel, alle Eigenschaften von Atomkernen zu beschreiben. Anfang des letzten Jahrzehnts war die Kernphysik-Theorie so weit fortgeschritten, dass die Berechnungen für einen einzigartigen angeregten Zustand des Isotops Lithium-6 (6Li) präziser zu sein schienen als der experimentelle Wert. Insbesondere beinhaltete die Theorie einen Effekt, der die Lebensdauer dieses Zustandes um ein paar wenige Prozentpunkte beeinflussen sollte. Um nachzuprüfen, ob das tatsächlich der Fall ist, wurde ein neues Hochpräzisionsexperiment durchgeführt. Gleichzeitig haben die Theoretiker der TU die Berechnung dank neuer Fortschritte durchführen können. Ein umfassendes Modell der Kernkräfte sollte sich nahtlos in das heute vorherrschende System aus Elementarkräften der Physik einfügen. Diese sogenannte „Chirale Effektive Feldtheorie“ hat die vorteilhafte Eigenschaft, dass sie sich schrittweise verbessern lässt.

    Die Wissenschaftler und Wissenschaftlerinnen untersuchten die Wechselwirkung von Kernen mit elektromagnetischen Wellen, die in der Quantenphysik als Lichtteilchen oder Photonen beschrieben werden. Einen besonderen Stellenwert genießt hier das Isotop 6Li, das aus jeweils drei Protonen und Neutronen besteht. Es ist das einfachste System aus Kernteilchen, dessen angeregter Zustand durch Aussenden eines Photons zerfallen kann, also sehr gut für einen Test von fundamentalen Theorien geeignet. Wie die Autoren in ihrem Artikel darlegen, war schon abzusehen, dass die nächste Verbesserungsstufe der Theorie so präzise sein würde, dass die bisherigen Messdaten nicht mehr ausreichen, um die Qualität der Vorhersagen zu beurteilen.

    Hochpräzisionsexperiment am supraleitenden Elektronen-Linearbeschleuniger S-DALINAC

    Daher wurde am supraleitenden Darmstädter Elektronen-Linearbeschleuniger S-DALINAC des Instituts für Kernphysik der TU Darmstadt ein Hochpräzisionsexperiment zur Messung der Lebensdauer dieses Zustandes von 6Li durchgeführt. Durch den Elektronenstrahl des S-DALINAC können Photonen mit der millionenfachen Energie von sichtbarem Licht erzeugt werden, die zur Anregung von 6Li notwendig sind.

    Mitarbeiterinnen und Mitarbeiter der Arbeitsgruppe um Professor Pietralla verbesserten eine etablierte Messmethode entscheidend, sodass sie die Lebensdauer mit einer Genauigkeit von zwei Attosekunden, also zwei Trillionstel einer Sekunde, bestimmen konnten. Der Erfolg der Messung war davon abhängig, wie das verwendete Lithiumcarbonat-Material die Absorption von Photonen beeinflusst. Hier konnte die Arbeitsgruppe um Professor Albe vom Fachgebiet Materialmodellierung entscheidende Beiträge leisten.

    Begleitend zum experimentellen Fortschritt, erzielte ein Team aus drei Doktoranden aus den Gruppen um Professor Roth und Professor Schwenk von der TU Darmstadt, sowie Professor Bacca von der Johannes Gutenberg-Universität Mainz, zusammen mit nationalen und internationalen Kolleginnen und Kollegen einen Durchbruch und erreichten die erwartete hohe Präzision der theoretischen Vorhersagen.

    „Ein Vergleich des experimentellen Ergebnisses mit der theoretischen Vorhersage zeigte eine hervorragende Übereinstimmung“, berichtet Udo Friman-Gayer, der während seiner Promotion bei Professor Pietralla an diesem Thema gearbeitet hat und jetzt als Postdoc in den USA angestellt ist.

    Im Rahmen des SFB 1245 und des kürzlich gestarteten LOEWE - Projekts „Nukleare Photonik“ sollen künftig die Anwendbarkeit der neuen Messmethode und der verbesserten Theorie erweitert werden, um der Antwort auf fundamentale Fragestellungen wie nach der Entstehung der Elemente im Universum näherzukommen.


    Originalpublikation:

    https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.102501


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Physik / Astronomie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).