idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
22.03.2021 11:14

Fortschritt für CRISPR/Cas: Forschende schalten viele Pflanzen-Gene auf einmal aus

Tom Leonhardt Pressestelle
Martin-Luther-Universität Halle-Wittenberg

    Viele Mutationen auf einen Streich: Mit Hilfe einer verbesserten Variante der Gen-Schere CRISPR/Cas9 lassen sich bis zu zwölf Gene in Pflanzen auf einmal ausschalten. Bislang war das nur für einzelne Gene oder kleine Gruppen möglich. Entwickelt wurde der Ansatz von Forschenden der Martin-Luther-Universität Halle-Wittenberg (MLU) und des Leibniz-Instituts für Pflanzenbiochemie (IPB). Mit der Methode lässt sich das Zusammenspiel verschiedener Gene besser erforschen. Die Studie erschien in der Fachzeitschrift "The Plant Journal".

    Die Vererbung von Eigenschaften ist bei Pflanzen selten so einfach und geradlinig wie von Gregor Mendel beschrieben. Der Mönch, der im 19. Jahrhundert mit seinen Versuchen zur Vererbung an Erbsen die Grundlagen der Genetik legte, hatte Glück: "Bei den von Mendel untersuchten Eigenschaften galt zufällig die Regel: Nur ein Gen bestimmt eine konkrete Eigenschaft, zum Beispiel die Farbe der Erbsen", sagt der Pflanzengenetiker Dr. Johannes Stuttmann vom Institut für Biologie der MLU. In vielen Fällen sei es aber deutlich komplizierter, so der Forscher: Oft sind es verschiedene Gene, die im Zusammenspiel in bestimmten Eigenschaften resultieren oder teilweise redundant zueinander sind, also dieselbe Eigenschaft zur Folge haben. Wird nur eins dieser Gene ausgeschaltet, sind die Folgen bei den Pflanzen nicht zu sehen.

    Die Wissenschaftlerinnen und Wissenschaftler der MLU und des IPB haben nun eine Möglichkeit entwickelt, dieses komplexe Phänomen gezielter zu untersuchen. Dafür verbesserten sie die Gen-Schere CRISPR/Cas9, mit der sich die DNA von Organismen an bestimmten Stellen schneiden lässt. Grundlage hierfür war die Arbeit des Biologen Dr. Sylvestre Marillonnet, der am IPB einen optimierten Baustein für das CRISPR/Cas9-System entwickelte. "Mit Hilfe dieses Bausteins wird in den Pflanzen deutlich mehr von dem Cas9-Enzym gebildet, das als Schere für das Erbgut fungiert", sagt Stuttmann. Zusätzlich wurden bis zu 24 verschiedene sogenannte Guide-RNAs hinzugefügt, die das Scheren-Enzym an die gewünschten Stellen im Erbgut führen. Experimente an der Ackerschmalwand (Arabidopsis thaliana) und der wilden Tabakpflanze Nicotiana benthamiana zeigten, dass der Ansatz funktioniert: In den Tabakpflanzen konnten bis zu acht Gene, in der Ackerschmalwand in Einzelfällen sogar bis zu zwölf Gene gleichzeitig ausgeschaltet werden. Das sei ein großer Fortschritt, sagt Stuttmann: "Meines Wissens nach ist unsere Gruppe die erste, die so viele Zielgene auf einen Schlag erfolgreich ansprechen konnte. Damit lässt sich die Redundanz von Genen womöglich überkommen", so der Biologe.

    Bislang waren die Möglichkeiten, solche Mehrfachmutationen zu erzeugen, deutlich aufwändiger: Die Pflanzen mussten mit jeweils einer einzelnen Mutation schrittweise gezüchtet und dann miteinander gekreuzt werden. "Das ist nicht nur zeitaufwändig, sondern auch nicht in allen Fällen möglich", sagt Stuttmann. Der neue, an der MLU und am IPB entwickelte Ansatz kompensiert diese Nachteile und stellt womöglich eine effizientere Methode für die Forschung dar: Künftig können so auch zufällige Kombinationen mehrere Gene ausprobiert werden, um Redundanzen aufzuzeigen. Erst bei auffälligen Veränderungen müsste dann gezielt das Erbgut der neuen Pflanzen analysiert werden.

    Die Studie wurde von der Deutschen Forschungsgemeinschaft (DFG) gefördert.


    Originalpublikation:

    Stuttmann J. et al. Highly efficient multiplex editing: One-shot generation of 8x Nicotiana benthamiana and 12x Arabidopsis mutants. The Plant Journal (2021). Doi: 10.1111/tpj.15197
    https://doi.org/10.1111/tpj.15197


    Bilder

    In der Arbeit nutzten die Forschenden Marker, um verschiedene Pflanzensamen voneinander zu unterscheiden. Mit bloßem Auge lässt sich kein Unterschied erkennen. Unter UV-Licht erscheinen transgene Samen dann jedoch rot, nicht-transgene grün. (linkes Bild)
    In der Arbeit nutzten die Forschenden Marker, um verschiedene Pflanzensamen voneinander zu untersche ...

    Jessica Lee Erickson


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie, Chemie
    überregional
    Forschungsergebnisse
    Deutsch


     

    In der Arbeit nutzten die Forschenden Marker, um verschiedene Pflanzensamen voneinander zu unterscheiden. Mit bloßem Auge lässt sich kein Unterschied erkennen. Unter UV-Licht erscheinen transgene Samen dann jedoch rot, nicht-transgene grün. (linkes Bild)


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).