idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Thema Corona

Imagefilm
Science Video Project
idw-News App:

AppStore



Teilen: 
12.04.2021 16:34

Quantum boost for a classical cooling technology: new material improves magnetic cooling near absolute zero

Corina Härning Stabsstelle Kommunikation und Marketing
Universität Augsburg

    Cooling is a long-standing technological challenge. Standard cooling cycle based on vapor compression exploits expensive helium gas to reach temperatures near absolute zero. Adiabatic demagnetization known since nearly a century could be a viable alternative if compact and durable paramagnetic materials were available. A team of researchers from the University of Augsburg used their recent experience in creating quantum-disordered magnetic states to design a promising new material for adiabatic demagnetization cooling.

    Hundred years back, people dreamed of a personal fridge to preserve food and chill beverages in their apartment, whereas researchers struggled to reach temperatures several degrees above absolute zero (0 Kelvin or -273.15 oC) to observe novel interesting phenomena like superconductivity. Both tasks have been accomplished by the modern technology, and temperatures of 2-3 Kelvin are nowadays routinely available in every low-temperature lab. Approaching absolute zero even closer is the next challenge motivated by important technological prospects. Nascent quantum computers prepare to revolutionize numerical calculations and boost large-scale simulations, yet these new devices have to operate at temperatures as low as 0.02 Kelvin, or -273.13 oC, to avoid decoherence.

    Ultra-low temperatures for a steep price

    Reaching temperatures close to absolute zero has been possible since decades using the so-called dilution refrigeration where a mixture of helium isotopes is employed in a standard vapor compression cycle, the same principle as used by domestic refrigerators in nearly every household. Unlike kitchen appliances, dilution refrigerators are expensive – the prices are in the range of hundreds kEUR – but even more expensive is the helium gas. Its price grows continuously, as the world supplies dwindle. “Helium costs are an ever-increasing part of my research budget”, says Prof. Philipp Gegenwart who heads the Chair of Experimental Physics VI, the focal point of ultra-low-temperature research at the University of Augsburg. “This financial pressure compels us to look into alternative, helium-free cooling technologies.”

    Drawbacks of magnetic cooling

    In their search for alternative cooling techniques, researchers from Augsburg pursued another classical method, adiabatic demagnetization. Here, external magnetic field is used to align electron spins, microscopic magnetic moments residing on individual atoms. This alignment abates entropy, which is the gauge of system’s disorder. “Fundamental laws of thermodynamics relate temperature and entropy”, explains Dr. Yoshi Tokiwa, previously the group leader in Augsburg and now the senior scientist at Advanced Science Research Center in Tokai, Japan. “Removing magnetic field adiabatically – without any heat exchange with the environment – will keep entropy at its minimum and force the system to cool down. Very low temperatures can then be reached upon a simple sweep of the magnetic field.” The bottleneck in this process are residual interactions between magnetic moments. For a practical cooling below 1 Kelvin, magnetic atoms should be placed very far apart to reduce their interactions. Such paramagnetic salts known since 1920’s have been of limited use because of their poor durability and low density of magnetic ions. Both drawbacks go back to the abundant presence of water molecules that are incorporated into a solid in order to separate the magnetic ions and prevent them from interacting.

    Insights from quantum physics

    Latest concepts of quantum physics are used to design a water-free material for magnetic cooling. Researchers from Augsburg investigate special quantum states called spin liquids. Those are not liquid per se, but feature electron spins behaving as if they were particles in a liquid, dynamic and flowing. “This fundamental topic is very interesting, yet hard to justify when you are asked about possible applications”, reflects Dr. Alexander Tsirlin, group leader at the Chair of Experimental Physics VI. “But now we are finally in a position to make this research practical. Using competing and random magnetic interactions as typical ingredients of a spin liquid, we can also design a material, complex ytterbium borate, with a high density of magnetic ions and excellent cooling performance.” The paper published in Communication Physics demonstrates temperatures as low as 0.022 Kelvin achieved with this material upon a single reduction of magnetic field from 5 to 0 Tesla.

    Technological potential

    The discovery opens immediate lab applications for single-shot ultra-low-temperature experiments, but also has a broader potential if several pellets of the material could be used in a sequence for continuous cooling. Gegenwart’s group has filed a utility model and receives support from the project knowledge-transfer region Augsburg (WiR) to approach collaboration with industrial partners for investigating the technological opportunities of the new material.


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Philipp Gegenwart and Dr. Alexander Tsirlin
    Chair of Experimental Physics VI, Institute of Physics / Center of Electronic Correlations and Magnetism
    University of Augsburg
    Phone: +49(0)821/598‐3651
    philipp.gegewart@physik.uni‐augsburg.de, alexander.tsirlin@physik.uni-augsburg.de


    Originalpublikation:

    Yoshi Tokiwa, Sebastian Bachus, K. Kavita, Anton Jesche, Alexander A. Tsirlin, and Philipp Gegenwart, Frustrated magnet for adiabatic demagnetization cooling to milli-Kelvin temperatures. Comm. Mater. 2, 42 (2021), DOI: 10.1038/s43246-021-00142-1.
    >> https://www.nature.com/articles/s43246-021-00142-1


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse
    Englisch


    Essential for many fundamental questions: research close to absolute Zero. Prof. Philipp Geggenwart in Augsburg University's low temperature lab.


    Zum Download

    x

    Sweeping magnetic field from 5 Tesla to 0 Tesla reduces temperature from 2 to 0.022 Kelvin. This ultra-low temperature can be maintained for more than an hour.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).