idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
19.05.2021 13:47

Alzheimerprotein APP reguliert Lernen und Sozialverhalten im gesunden Gehirn

Marietta Fuhrmann-Koch Kommunikation und Marketing
Universität Heidelberg

    Welche Aufgabe das als Alzheimerprotein bekannte Protein APP im gesunden Gehirn übernimmt, ist bisher weitgehend unklar. Ein Forscherteam unter Heidelberger Leitung hat nun anhand von Untersuchungen an einem Mausmodell neue Erkenntnisse zur physiologischen Funktion der APP-Proteinfamilie gewonnen. Demnach führt das Fehlen von APP während der Entwicklung des Gehirns zu Missbildungen in Gehirnregionen, die wichtig für das Lernen und die Gedächtnisbildung sind. In der Folge traten bei den Mäusen massive Beeinträchtigungen des Lernvermögens sowie Autismus-ähnliches Verhalten auf.

    Pressemitteilung
    Heidelberg, 19. Mai 2021

    Alzheimerprotein APP reguliert Lernen und Sozialverhalten im gesunden Gehirn
    Jenseits von Plaques: Heidelberger Wissenschaftler entschlüsseln natürliche Funktionen der APP-Proteinfamilie

    Bekannt ist, dass das Protein APP eine Schlüsselrolle bei der Entstehung der Alzheimer-Krankheit spielt. Welche Aufgabe es im gesunden Gehirn übernimmt, ist bisher jedoch weitgehend unklar. Ein internationales Forscherteam unter Leitung der Molekularbiologin Prof. Dr. Ulrike Müller von der Universität Heidelberg hat nun anhand von Untersuchungen an einem Mausmodell, bei dem APP fehlte, neue Erkenntnisse zur physiologischen Funktion der APP-Proteinfamilie gewonnen. Die Wissenschaftler konnten nachweisen, dass das Fehlen von APP während der Entwicklung des Gehirns zu Missbildungen in Gehirnregionen führt, die wichtig für das Lernen und die Gedächtnisbildung sind. In der Folge traten bei diesen Mäusen massive Beeinträchtigungen des Lernvermögens sowie Autismus-ähnliches Verhalten auf.

    Ausgelöst wird Alzheimer durch Ablagerungen unlöslicher Eiweißbestandteile im Gehirn, die in der Umgebung von Nervenzellen sogenannte Plaques bilden. Hauptbestandteil dieser Plaques sind kleine β-Amyloid-Peptide (Aβ), die durch Spaltung aus dem Amyloid-Prekursor-Protein (APP) entstehen. Aβ-Peptide schädigen die Nervenzellen und verursachen letztlich ihren Tod. Während die nervenzellschädigende Wirkung von Aβ-Peptiden seit vielen Jahren bekannt ist, wusste man bisher nur sehr wenig über die natürlichen, physiologischen Funktionen von APP. Nach Angaben der Wissenschaftler lohnt es sich, diesen nicht-pathologischen Ansatz zu verfolgen, da APP und zwei weitere, eng damit verwandte Proteine von fast allen Nervenzellen des Gehirns gebildet werden – insbesondere in Regionen, die für das Lernen und die Gedächtnisbildung wichtig sind.

    Um zu untersuchen, welchen Einfluss die APP-Familie auf die Entwicklung und Funktion des Nervensystems hat, bediente sich die Forschungsgruppe von Prof. Müller eines Tiermodells. Untersucht wurden genetisch veränderte Mäuse, bei denen die Bildung aller Proteine der APP-Familie unterbunden war. Die genaue Untersuchung ihrer Gehirne zeigte, dass der Verlust von APP während der Entwicklung des Gehirns zu Missbildungen in der schichtartigen Struktur des Hippocampus führt – einer Gehirnregion, die eine zentrale Rolle bei der Gedächtnisbildung einnimmt. „Wir konnten beobachten, dass aufgrund des Fehlens von APP die Verschaltung der Nervenzellen gestört war und sich die Zahl der synaptischen Kontaktstellen verringerte. Der Verlust von APP führte außerdem zu einer sehr stark reduzierten Nervenzellkommunikation, die Leistung der Tiere bei Verhaltenstests zur Untersuchung des Lernvermögens war deutlich beeinträchtigt“, so Ulrike Müller, Leiterin der Abteilung Funktionelle Genomik am Institut für Pharmazie und Molekulare Biotechnologie der Universität Heidelberg.

    Überraschend war für die Forscher nach Angaben von Prof. Müller, dass Störungen bei der Entwicklung des Gehirns auch mit Autismus-ähnlichen Veränderungen des Verhaltens einhergingen. Die Mäuse zeigten charakteristische, sich wiederholende Bewegungsmuster und hatten kein Interesse an der Interaktion mit ihren Artgenossen. „Unsere Forschungsergebnisse weisen darauf hin, dass die APP-Familie eine entscheidende Rolle bei der normalen Entwicklung des Nervensystems, der Lernfähigkeit, der Gedächtnisbildung und der sozialen Kommunikation spielt“, erklärt die Wissenschaftlerin. „Potenziell können sie künftig die Grundlage für die Entwicklung neuer Therapeutika zur Behandlung der Alzheimer-Krankheit bilden.“

    An der von der Deutschen Forschungsgemeinschaft geförderten internationalen Studie waren neben den Heidelberger Wissenschaftlerinnen und Wissenschaftlern auch Forscher der Technischen Universität Braunschweig, der Universität Mainz sowie der Universität Zürich (Schweiz) beteiligt. Die Ergebnisse wurden in der Fachzeitschrift „The EMBO Journal“ veröffentlicht.

    Kontakt:
    Universität Heidelberg
    Kommunikation und Marketing
    Pressestelle, Telefon (06221) 54-2311
    presse@rektorat.uni-heidelberg.de


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Ulrike Müller
    Institut für Pharmazie und Molekulare Biotechnologie
    Telefon (06221) 54-6717
    u.mueller@urz.uni-heidelberg.de


    Originalpublikation:

    V. Steubler, S. Klein, M. Back, S. Ludewig, D. Fässler, M. Richter, K. Han, L. Slomianka, I. Amrein, J. von Engelhardt, D. P. Wolfer, M. Korte, U. C. Müller: Loss of all three APP family members during development impairs synaptic function and plasticity, disrupts learning and causes an autism-like phenotype. The EMBO Journal (19 May 2021), DOI: 10.15252/embj.2020107471


    Weitere Informationen:

    http://www.ipmb.uni-heidelberg.de/bioinfo-fkt_gen/mueller


    Bilder

    Der Verlust der APP-Familie führt zu einer veränderten Position von Nervenzellen (gelb) im Hippocampus. Nervenzellen, denen die Proteine der APP-Familie fehlen, zeigen weniger synaptische Verbindungen mit anderen Nervenzellen.
    Der Verlust der APP-Familie führt zu einer veränderten Position von Nervenzellen (gelb) im Hippocamp ...

    Susanne Klein, Forschungsgruppe Prof. Müller, Universität Heidelberg


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie, Medizin
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Der Verlust der APP-Familie führt zu einer veränderten Position von Nervenzellen (gelb) im Hippocampus. Nervenzellen, denen die Proteine der APP-Familie fehlen, zeigen weniger synaptische Verbindungen mit anderen Nervenzellen.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).