idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
27.05.2021 09:14

Artificial Neurons Recognize Biosignals in Real Time

Rita Ziegler Kommunikation
Universität Zürich

    Researchers from Zurich have developed a compact, energy-efficient device made from artificial neurons that is capable of decoding brainwaves. The chip uses data recorded from the brainwaves of epilepsy patients to identify which regions of the brain cause epileptic seizures. This opens up new perspectives for treatment.

    Current neural network algorithms produce impressive results that help solve an incredible number of problems. However, the electronic devices used to run these algorithms still require too much processing power. These artificial intelligence (AI) systems simply cannot compete with an actual brain when it comes to processing sensory information or interactions with the environment in real time.

    Neuromorphic chip detects high-frequency oscillations

    Neuromorphic engineering is a promising new approach that bridges the gap between artificial and natural intelligence. An interdisciplinary research team at the University of Zurich, the ETH Zurich, and the UniversityHospital Zurich has used this approach to develop a chip based on neuromorphic technology that reliably and accurately recognizes complex biosignals. The scientists were able to use this technology to successfully detect previously recorded high-frequency oscillations (HFOs). These specific waves, measured using an intracranial electroencephalogram (iEEG), have proven to be promising biomarkers for identifying the brain tissue that causes epileptic seizures.

    Complex, compact and energy efficient

    The researchers first designed an algorithm that detects HFOs by simulating the brain’s natural neural network: a tiny so-called spiking neural network (SNN). The second step involved imple-menting the SNN in a fingernail-sized piece of hardware that receives neural signals by means of electrodes and which, unlike conventional computers, is massively energy efficient. This makes calculations with a very high temporal resolution possible, without relying on the internet or cloud computing. “Our design allows us to recognize spatiotemporal patterns in biological signals in real time,” says Giacomo Indiveri, professor at the Institute for Neuroinformatics of UZH and ETH Zur-ich.

    Measuring HFOs in operating theaters and outside of hospitals

    The researchers are now planning to use their findings to create an electronic system that reliably recognizes and monitors HFOs in real time. When used as an additional diagnostic tool in operating theaters, the system could improve the outcome of neurosurgical interventions.

    However, this is not the only field where HFO recognition can play an important role. The team’s long-term target is to develop a device for monitoring epilepsy that could be used outside of the hospital and that would make it possible to analyze signals from a large number of electrodes over several weeks or months. “We want to integrate low-energy, wireless data communications in the design – to connect it to a cellphone, for example,” says Indiveri. Johannes Sarnthein, a neurophysiologist at UniversityHospital Zurich, elaborates: “A portable or implantable chip such as this could identify periods with a higher or lower rate of incidence of seizures, which would enable us to deliver personalized medicine.” This research on epilepsy is being conducted at the Zurich Center of Epileptology and Epilepsy Surgery, which is run as part of a partnership between UniversityHospital Zurich, the Swiss Epilepsy Clinic and the University Children’s Hospital Zurich.


    Wissenschaftliche Ansprechpartner:

    Prof. Giacomo Indiveri
    Department of Neuroinformatics
    University of Zurich and ETH Zurich
    Phone: +41 44 635 30 26
    E-mail: giacomo@ini.uzh.ch

    Prof. Johannes Sarnthein
    Department of Neurosurgery
    UniversityHospital Zurich
    Phone: +41 44 255 5672
    E-mail: johannes.sarnthein@usz.ch


    Originalpublikation:

    Mohammadali Sharifshazileh, Karla Burelo, Johannes Sarnthein, Giacomo Indiveri. An electronic neuromorphic system for real-time detection of high frequency oscillations (HFO) in intracranial EEG. Nature Communications. 25 May 2021. DOI: 10.1038/s41467-021-23342-2


    Weitere Informationen:

    https://www.media.uzh.ch/en/Press-Releases/2021/chip.html


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten
    Biologie, Elektrotechnik, Informationstechnik, Medizin
    überregional
    Forschungsergebnisse, Forschungsprojekte
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).