idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
28.05.2021 10:27

Atome in Keramik mechanisch einprägen - „Science“-Publikation von Forschenden unter Führung der TU Darmstadt

Bettina Bastian Stabsstelle Kommunikation und Medien
Technische Universität Darmstadt

    Elektrokeramiken wie zum Beispiel Kondensatoren sind essentielle Bestandteile von elektronischen Geräten. Greift man in ihren kristallinen Aufbau ein, können Eigenschaften gezielt verändert werden. So lassen sich etwa durch chemische Methoden einzelne Atome im Kristallgitter durch andere ersetzen. Ersetzt man nicht nur ein Atom, sondern eine ganze Reihe, entsteht eine stabile Form. Einem Forschungsteam unter Leitung der TU Darmstadt ist es nun gelungen, eine Versetzung planvoll in eine ferroelektrische Keramik einzufügen, indem es die Atome in das Material mechanisch einprägte – ein Vorgehen, das bisher nur bei Metallen zur Anwendung kam. Die Ergebnisse wurden in „Science“ veröffentlicht.

    Der Weltmarkt an Elektrokeramiken beträgt jährlich etwa 25 Milliarden Euro. Diese sehr kleinen Bauteile entgehen oft der täglichen Wahrnehmung. Allein in einem Smartphone befinden sich 600 Kondensatoren, von denen insgesamt jährlich drei Billionen, also 3000 Milliarden, hergestellt werden. Die Funktionsweise von vielen Elektrokeramiken basiert nicht auf Stromfluss durch das Material, sondern auf kleinen Ladungsverschiebungen, Polarisation genannt, über Bruchteile eines atomaren Durchmessers. Etwa ein Viertel der weltweit hergestellten Elektrokeramiken verknüpft diese Polarisation mit einer Verlängerung des Materials, die wiederum auf eine Genauigkeit eines atomaren Durchmessers eingestellt werden kann. Erst damit können die immer kleiner werdenden Computerbauteile und Mikroroboter strukturiert werden.

    Atomare Reihen im Atom austauschen

    Die Eigenschaften der Elektrokeramiken lassen sich verbessern, indem man mit chemischen Eingriffen einzelne Atome im regelmäßig geformten Kristallgitter durch andere ersetzt (dotiert), so als würde man in einen Kinosaal voller Fans des FC Bayern München mit roten Trikots einen Fan von Borussia Dortmund mit schwarz-gelbem Trikot setzen. Bei besonderen Anforderungen wie etwa erhöhter Temperatur oder elektrischer Spannung verliert allerdings das dotierte Atom seinen Platz – der Fan würde herumgestoßen – und die Funktion der Keramik leidet drastisch.

    Der Einbau einzelner Atome in ein Keramik-Kristallgitter ist für komplexe Anforderungen nicht stabil genug, der Einbau ganzer atomarer Reihen (Versetzung) ist jedoch robust. Im Fußball-Beispiel entspräche das einer Kinoreihe von Fans der Borussia zwischen den Fans der Bayern. Für die Erforschung dieser Versetzungen kooperieren Materialwissenschaftlerinnen und -wissenschaftler aus drei Arbeitsgruppen der TU Darmstadt mit Forschungsgruppen aus der Schweiz, den Niederlanden und der USA.

    Neue Atome, neue Eigenschaften

    „Für planvolle Versetzungen reichen chemische Methoden nicht mehr aus“, sagt Professor Jürgen Rödel, Leiter des Fachgebiets für Nichtmetallisch-Anorganische Werkstoffe der TU Darmstadt. Den Forschenden gelang die Versetzung stattdessen mechanisch: Sie nutzen ein Verfahren, bei dem die Keramiken unter kontrollierten Druck- und Temperaturverhältnissen mechanisch verformt werden und sich die Versetzung in die Keramik einprägen lässt. Ein solches Vorgehen ist bei Metallen trivial, schien bisher aber bei Keramiken wegen deren großer Härte kaum denkbar. Zudem ist die keramische Oberfläche sehr spröde und kann leicht brechen. Um diese Hindernisse zu überwinden, verwandten die Wissenschaftlerinnen und Wissenschaftler eine mechanische Einprägung bei 1150 Grad Celsius in einen Einkristall vorher berechneter optimierter Orientierung.

    Mit dieser Methode ist nun ein wohl geordnetes Feld neu besetzter atomarer Reihen möglich. Diese Reihen kontrollieren jetzt im Material die lokale Polarisation, die Ladungsverschiebung. Da die eingeprägten Reihen die Polarisation klar begrenzen, kann diese auch nicht durch sehr hohe Betriebsanforderungen an Struktur verlieren. Im Betrieb der Elektrokeramik nehmen jetzt die durch Reihen (Versetzungen) abgegrenzten Materialbereiche bestimmte Ladungsverschiebungen ein, ganz so als würden sich die Fans der Bayern in Kinosektionen vorbeugen oder zur Seite lehnen. Da sich diese Materialbereiche bei hohen Anforderungen nicht verändern, wird keine Energie durch innere Reibung umgewandelt und das Materialverhalten bleibt stabil.

    Diese Materialien erlauben es jetzt, gleich bleibende Eigenschaften auch bei erhöhter Temperatur und erhöhtem Energieeinsatz zu gewährleisten. Gleichzeitig gehen die Forschenden die nötige Kostenreduktion an, um die Versetzungen durch mehrere Optionen des mechanischen Einprägens zur Verfügung stellen zu können.

    Publikation
    M. Höfling, X. Zhou, E. Bruder, B. Liu, L. Zhou, P.B. Groscewicz, F. Zhuz, L. Riemer, B.-X. Xu, K. Durst, D. Damjanovic, X. Tan, J. Koruza and J. Rödel: „Control of polarization in bulk ferroelectrics by mechanical dislocation imprint“. In: Science Vol. 372, Issue 6545, pp. 961-964.
    DOI: 10.1126/science.abe3810

    https://bit.ly/2R4OCYo

    Reinhart Koselleck-Projekt
    Die „Erforschung von Versetzungen in Keramiken“ wird von der DFG als ein Reinhart Koselleck-Projekt für fünf Jahre mit 1,25 Millionen Euro gefördert. Das Programm zielt auf Freiräume für besonders innovative und im positiven Sinne risikobehaftete Forschung und zeichnet so hoch renommierte Wissenschaftlerinnen und Wissenschaftler aus. Professor Jürgen Rödel warb erstmals für die TU Darmstadt eine solche DFG-Unterstützung ein. In benachbarten Feldern des Ladungstransports und der Erhöhung der Zuverlässigkeit von Keramiken (duktile Keramik) gab es bereits hochrangige Publikationen und erste Patentanmeldungen in seinem Projekt. Die Reihe internationaler Forschungspartner erhöht sich derzeit sehr schnell und bezieht auch Teams in England, China und vor allem Japan ein.

    Kontakt
    Professor Dr. Jürgen Rödel
    Fachbereich Material- und Geowissenschaften
    Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
    Tel.: 06151/16-21693
    E-Mail: Roedel@ceramics.tu-darmstadt.de

    Über die TU Darmstadt
    Die TU Darmstadt zählt zu den führenden Technischen Universitäten in Deutschland und steht für exzellente und relevante Wissenschaft. Globale Transformationen – von der Energiewende über Industrie 4.0 bis zur Künstlichen Intelligenz – gestaltet die TU Darmstadt durch herausragende Erkenntnisse und zukunftsweisende Studienangebote entscheidend mit.
    Ihre Spitzenforschung bündelt die TU Darmstadt in drei Feldern: Energy and Environment, Information and Intelligence, Matter and Materials. Ihre problemzentrierte Interdisziplinarität und der produktive Austausch mit Gesellschaft, Wirtschaft und Politik erzeugen Fortschritte für eine weltweit nachhaltige Entwicklung.
    Seit ihrer Gründung 1877 zählt die TU Darmstadt zu den am stärksten international geprägten Universitäten in Deutschland; als Europäische Technische Universität baut sie in der Allianz Unite! einen transeuropäischen Campus auf. Mit ihren Partnern der Rhein-Main-Universitäten – der Goethe-Universität Frankfurt und der Johannes Gutenberg-Universität Mainz – entwickelt sie die Metropolregion Frankfurt-Rhein-Main als global attraktiven Wissenschaftsraum weiter.

    www.tu-darmstadt.de

    MI-Nr. 44/2021, Rödel/cst


    Wissenschaftliche Ansprechpartner:

    Professor Dr. Jürgen Rödel
    Fachbereich Material- und Geowissenschaften
    Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
    Tel.: 06151/16-21693
    E-Mail: Roedel@ceramics.tu-darmstadt.de


    Originalpublikation:

    M. Höfling, X. Zhou, E. Bruder, B. Liu, L. Zhou, P.B. Groscewicz, F. Zhuz, L. Riemer, B.-X. Xu, K. Durst, D. Damjanovic, X. Tan, J. Koruza and J. Rödel: „Control of polarization in bulk ferroelectrics by mechanical dislocation imprint“. In: Science Vol. 372, Issue 6545, pp. 961-964.
    DOI: 10.1126/science.abe3810


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten
    Werkstoffwissenschaften
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).