idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
17.06.2021 12:55

Hybrid membrane doubles the lifetime of rechargeable batteries

Sebastian Hollstein Abteilung Hochschulkommunikation/Bereich Presse und Information
Friedrich-Schiller-Universität Jena

    Chemists from the University of Jena prevent dendrite formation in lithium metal batteries

    The energy density of traditional lithium-ion batteries is approaching a saturation point that cannot meet the demands of the future – for example in electric vehicles. Lithium metal batteries can provide double the energy per unit weight when compared to lithium-ion batteries. The biggest challenge, hindering its application, is the formation of lithium dendrites, small, needle-like structures, similar to stalagmites in a dripstone cave, over the lithium metal anode. These dendrites often continue to grow until they pierce the separator membrane, causing the battery to short-circuit and ultimately destroying it.

    For many years now, experts worldwide have been searching for a solution to this problem. Scientists at Friedrich Schiller University in Jena, together with colleagues from Boston University (BU) and Wayne State University (WSU), have now succeeded in preventing dendrite formation and thus at least doubling the lifetime of a lithium metal battery. The researchers report on their method in the renowned journal "Advanced Energy Materials".

    Two-dimensional membrane prevents dendrite nucleation

    During the charge transfer process, lithium ions move back and forth between the anode and the cathode. Whenever they pick up an electron, they deposit a lithium atom and these atoms accumulate on the anode. A crystalline surface is formed, which grows three-dimensionally where the atoms accumulate, creating the dendrites. The pores of the separator membrane influences the nucleation of dendrites. If ion transport is more homogeneous, dendrite nucleation can be avoided.

    “That’s why we applied an extremely thin, two-dimensional membrane made of carbon to the separator, with the pores having a diameter of less than one nanometer,” explains Professor Andrey Turchanin from the University of Jena. “These tiny openings are smaller than the critical nucleus size and thus prevent the nucleation that leads to the formation of dendrites. Instead of forming dendritic structures, the lithium is deposited on the anode as a smooth film.” There is no risk of the separator membrane being damaged by this and the functionality of the battery is not affected.

    “To test our method, we recharged test batteries fitted with our Hybrid Separator Membrane over and over again,” says Dr Antony George from the University of Jena. “Even after hundreds of charging and discharging cycles, we couldn’t detect any dendritic growth.”

    “The key innovation here is stabilizing electrode/electrolyte interface with an ultra-thin membrane that does not alter current battery manufacturing process” says Associate Professor Leela Mohana Reddy Arava from the WSU. “Interface stability holds key in enhancing the performance and safety of an electrochemical system”.

    Applied for a patent

    High energy density batteries extend the driving range of electric vehicle (EVs) for the same weight/volume of the battery that a modern EV possesses and make portable electronic devices last longer in a single charge. “The separator gets the least amount of attention when compared to the other components of the battery” says Sathish Rajendran, a graduate student at WSU. “The extent to which a nanometer thick two-dimensional membrane on the separator could make a difference in the lifetime of a battery is fascinating”.

    As a result, the research team is confident that their findings have the potential to bring about a new generation of lithium batteries. They have therefore applied for a patent for their method. The next step is to see how the application of the two-dimensional membrane can be integrated into the manufacturing process. The researchers also want to apply the idea to other types of batteries.


    Wissenschaftliche Ansprechpartner:

    Prof. Andrey Turchanin
    Institute of Physical Chemistry at Friedrich Schiller University Jena
    Lessingstraße 10, 07743 Jena, Germany
    Tel.: +49 (0)3641/948370
    E-mail: andrey.turchanin@uni-jena.de
    www.apc.uni-jena.de
    www.2dmatnet.uni-jena.de


    Originalpublikation:

    S. Rajendran, Z. Tang, A. George, A. Cannon, C. Neumann, A. Sawas, E. Ryan, A. Turchanin & L. M. R. Arava: Inhibition of Lithium Dendrite Formation in Lithium Metal Batteries via Regulated Cation Transport through Ultrathin Sub-Nanometer Porous Carbon Nanomembranes, Advanced Energy Materials, 2021, DOI: 10.1002/aenm.202100666


    Bilder

    Prototype lithium metal batteries with carbon nanomembrane modified separators being tested at Wayne State University
    Prototype lithium metal batteries with carbon nanomembrane modified separators being tested at Wayne ...
    Photo: Sathish Rajendran/WSU


    Merkmale dieser Pressemitteilung:
    Journalisten
    Chemie, Elektrotechnik, Energie, Umwelt / Ökologie
    überregional
    Forschungsergebnisse
    Englisch


     

    Prototype lithium metal batteries with carbon nanomembrane modified separators being tested at Wayne State University


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).