idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
17.06.2021 14:51

New long-term study by the University of Bayreuth shows rapid formation of micro- and nanoplastics in the environment

Christian Wißler Pressestelle
Universität Bayreuth

    Most microplastic particles in the environment originate from larger pieces of plastic. In a long-term study, an interdisciplinary research team at the University of Bayreuth has simulated how quickly plastic breaks down into fragments under natural influences. High-tech laboratory tests on polystyrene show two phases of abiotic degradation. To begin with, the stability of the plastic is weakened by photo-oxidation. Then cracks form and more and more and smaller fragments are released into the environment. The study, published in the journal "Environmental Science & Technology", allows conclusions to be drawn about other plastics that are common in the environment.

    Polystyrene is an inexpensive plastic that is often used for packaging and thermal insulation, and is therefore particularly common in plastic waste. As part of their long-term study, the Bayreuth researchers for the first time combined analytical investigations, which were also carried out on polystyrene particles at the atomic level, with measurements determining the behaviour of these particles under mechanical stress. On the basis of this, they developed a model for abiotic degradation, i.e. degradation without the influence of living organisms.

    "Our study shows that a single microplastic particle with a diameter of 160 micrometres releases about 500 particles in the order of 20 micrometres - i.e. 0.02 millimetres - over the course of one and a half years of being exposed to natural weathering processes in the environment. Over time, these particles in turn break down into smaller and smaller fragments. An ecocorona can form around these tiny particles, possibly facilitating penetration into the cells of living organisms. This was discovered a few months ago by another Bayreuth research group," says first author Nora Meides, a doctoral student in macromolecular chemistry at the University of Bayreuth.

    In the water, the microplastic particles were exposed to two stress factors: intense sunlight and continuous mechanical stress produced by agitation. In the real-world environment, sunlight and mechanical stress are in fact the two main abiotic factors that contribute to the gradual fragmentation of the particles. Irradiation by sunlight triggers oxidation processes on the surface of the particles. This photo-oxidation, in combination with mechanical stress, has significant consequences. The polystyrene chains become ever shorter. Furthermore, they become increasingly polar, i.e. centres of charge are formed in the molecules. In the second phase, the microplastic particles begin to fragment. Here, the particles break down into smaller and smaller fragments. From a single 160 micrometre particle, 500 daughter particles less than 20 micrometres in diameter are created. During this process, additional nanoplastic particles are formed.

    "Our research results are a valuable basis for investigating the abiotic degradation of macro- and microplastics in the environment - both on land and at the surface of water - in more detail, using other types of plastic as examples. We were surprised by the speed of fragmentation ourselves, which again shows the potential risks that could emanate from the growing burden of plastics on the environment. Especially larger plastic waste objects, are – when exposed to sunlight and abrasion – a reservoir of constant microplastic input. It is precisely these tiny particles, barely visible to the naked eye, that spread to the remotest ecosystems via various transport routes," says Teresa Menzel, PhD student in the area of Polymer Engineering.

    "The polystyrene investigated in our long-term study has a carbon-chain backbone, just like polyethylene and polypropylene. It is very likely that the two-phase model we have developed on polystyrene can be transferred to these plastics," adds lead author Prof. Dr. Jürgen Senker, Professor of Inorganic Chemistry, who coordinated the research work.

    The study that has now been published is the result of the close interdisciplinary cooperation of a working group belonging to the DFG Collaborative Research Centre "Microplastics" at the University of Bayreuth. In this team, scientists from macromolecular chemistry, inorganic chemistry, engineering science, and animal ecology are jointly researching the formation and degradation of microplastics. Numerous types of research technology are available on the Bayreuth campus for this purpose, which were used in the long-term study: among others, 13C-MAS NMR spectroscopy, energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and gel permeation chromatography (GPC).


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Jürgen Senker
    Inorganic Chemistry III
    University of Bayreuth
    Phone: +49 (0)921 55-2532
    E-mail: juergen.senker@uni-bayreuth.de

    Prof. Dr. Peter Strohriegl
    Macromolecular Chemistry I
    University of Bayreuth
    Phone: +49 (0)921 55-3296
    E-mail: peter.strohriegl@uni-bayreuth.de


    Originalpublikation:

    Nora Meides, Teresa Menzel, Björn Poetzschner, Martin G. J. Löder, Ulrich Mansfeld, Peter Strohriegl, Volker Altstädt, Jürgen Senker: Reconstructing the Environmental Degradation of Polystyrene by Accelerated Weathering. Environmental Science and Technology (2021), DOI: https://doi.org/10.1021/acs.est.0c07718


    Bilder

    Nora Meides M.Sc., first author of the new study and a doctoral student in macromolecular chemistry, at a weathering facility. Here, plastic particles are exposed to simulated solar radiation and mechanical stresses.
    Nora Meides M.Sc., first author of the new study and a doctoral student in macromolecular chemistry, ...
    Photo: C. Wißler.

    Samples of plastic particles in the weathering facility.
    Samples of plastic particles in the weathering facility.
    Photo: C. Wißler.


    Merkmale dieser Pressemitteilung:
    Journalisten, Lehrer/Schüler, Studierende, Wirtschaftsvertreter, Wissenschaftler, jedermann
    Chemie, Umwelt / Ökologie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Nora Meides M.Sc., first author of the new study and a doctoral student in macromolecular chemistry, at a weathering facility. Here, plastic particles are exposed to simulated solar radiation and mechanical stresses.


    Zum Download

    x

    Samples of plastic particles in the weathering facility.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).