idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
30.06.2021 09:11

Mechanische Multitalente in biologischen Zellen: Göttinger Forschungsteam untersucht spezielle Proteinstrukturen

Thomas Richter Öffentlichkeitsarbeit
Georg-August-Universität Göttingen

    Menschliche Körperzellen sind dauerhaft verschiedensten mechanischen Belastungen ausgesetzt. So müssen Herz und Lunge lebenslangem Ausdehnen und Zusammenziehen standhalten und Immunzellen sind stark verformbar, um sich durch den Körper zu bewegen. Dabei spielen spezielle Proteinstrukturen, sogenannte Intermediärfilamente, eine wichtige Rolle. Forscherinnen und Forschern der Universität Göttingen ist es jetzt erstmals gelungen, genau zu messen, welche physikalischen Effekte die Eigenschaften der einzelnen Filamente bestimmen und welche besonderen Eigenschaften erst durch das Zusammenspiel vieler Filamente in Netzwerken auftreten. Die Ergebnisse sind in der Fachzeitschrift PNAS erschienen.

    (pug) Eines der wichtigsten Systeme, die Zellen zu Verfügung haben, um ihre Stabilität, Dehnbarkeit und Widerstandsfähigkeit gegen mechanische Belastung zu gewährleisten, ist das Zellskelett. Gebildet wird es überwiegend aus drei Sorten fadenartiger Proteinstrukturen, die jeweils verschiedene Funktionen und Eigenschaften besitzen. Zu diesen Proteinstrukturen gehören die sogenannten Intermediärfilamente. Sie bilden Netzwerke, die sich sehr stark verformen lassen, ohne Schaden zu nehmen: die Stoßdämpfer der Zellen. Gleichzeitig können diese Intermediärfilamente bei sehr starken Verformungen als inneres Halteseil dienen, das eine Zelle davor bewahrt, zerrissen zu werden.

    Um diese Eigenschaften zu untersuchen, hat das Göttinger Team im Labor künstliche Netzwerke aus Intermediärfilamenten hergestellt und anhand der Bewegung von kleinen eingebetteten Kügelchen untersucht, wie sich das gesamte Netzwerk verhält. In den Netzwerken überlagern sich allerdings verschiedene Effekte: Das Dehnungsverhalten der einzelnen Filamente einerseits, und die Kraft und Häufigkeit, mit der die Filamente an Kreuzungspunkten wechselwirken, andererseits. Dazu haben die Forscherinnen und Forscher diese Aspekte getrennt untersucht, indem sie zunächst einzelne Filamente gestreckt haben, um die Kräfte zu bestimmen, die für die Streckung nötig sind.

    Anschließend haben sie zwei der Filamente in einer gekreuzten Anordnung miteinander in Kontakt gebracht und durch Bewegung eines der Filamente an der Kontaktstelle gezogen. Durch diese Anordnung wie bei einer „mikroskopischen Geige“ haben sie genau bestimmt, mit welchen Kräften und welcher Häufigkeit die Filamente aneinanderbinden. Diese Ergebnisse konnten sie zusätzlich mit Computersimulationen stützen. Zudem hat das Team beobachtet, dass sich die Netzwerke über einen erstaunlich langen Zeitraum hinweg verändern und über eine Woche hinweg langsam „altern“, weil die Filamente immer länger werden oder sich zu Bündeln zusammenschließen.

    „Alle diese Beobachtungen erweitern unser Verständnis dafür, warum unsere Zellen so unglaublich robust und trotzdem flexibel sind“, erklärt die Erstautorin der Studie, Anna Schepers vom Institut für Röntgenphysik der Universität Göttingen. „Zudem hilft ein klareres Bild von Intermediärfilamenten zu verstehen, wie und wieso sich die mechanischen Eigenschaften von Zellen zum Beispiel bei der Wundheilung oder bei metastasierenden Krebszellen ändern“, ergänzt die Leiterin der Studie, Prof. Dr. Sarah Köster.


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Sarah Köster
    Georg-August-Universität Göttingen
    Institut für Röntgenphysik
    Friedrich-Hund-Platz 1, 37077 Göttingen
    Telefon: 0551 / 39 29429
    sarah.koester@phys.uni-goettingen.de
    www.uni-goettingen.de/koesterlab


    Originalpublikation:

    Anna V. Schepers, Charlotta Lorenz, Peter Nietmann, Andreas Janshoff, Stefan Klumpp, Sarah Köster. Multiscale mechanics and temporal evolution of vimentin intermediate filament networks. Proc. Natl. Acad. Sci. 2021. Doi: https://doi.org/10.1073/pnas.2102026118


    Bilder

    Mikroskopische Kügelchen bewegen sich mit einem Netzwerk aus Intermediärfilamenten. Durch Analyse der Bewegung können Schlüsse auf die Netzwerk- und Filamenteigenschaften gezogen werden.
    Mikroskopische Kügelchen bewegen sich mit einem Netzwerk aus Intermediärfilamenten. Durch Analyse de ...
    Dr. Markus Osterhoff

    Peter Nietmann, Prof. Dr. Andreas Janshoff, Prof. Dr. Stefan Klumpp, Prof. Dr. Sarah Köster, Anna Schepers, Charlotta Lorenz (von links).
    Peter Nietmann, Prof. Dr. Andreas Janshoff, Prof. Dr. Stefan Klumpp, Prof. Dr. Sarah Köster, Anna Sc ...
    Dr. Markus Osterhoff


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Physik / Astronomie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Mikroskopische Kügelchen bewegen sich mit einem Netzwerk aus Intermediärfilamenten. Durch Analyse der Bewegung können Schlüsse auf die Netzwerk- und Filamenteigenschaften gezogen werden.


    Zum Download

    x

    Peter Nietmann, Prof. Dr. Andreas Janshoff, Prof. Dr. Stefan Klumpp, Prof. Dr. Sarah Köster, Anna Schepers, Charlotta Lorenz (von links).


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).