idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
01.07.2021 08:40

New study: Physicists identify energy states of individual atoms following a collision

Melanie Löw Universitätskommunikation
Technische Universität Kaiserslautern

    Physicists at Technische Universität Kaiserslautern in the team of Professor Dr. Herwig Ott have succeeded for the first time in directly observing collisions between highly excited atoms, so-called Rydberg atoms, and atoms in the ground state. Particularly interesting is that they can precisely identify the energy states of the individual atoms, which was impossible until now. The researchers have developed a custom microscope for this purpose, with which they were able to directly measure the momenta of the atoms. The processes observed are important for understanding interstellar plasma and ultracold plasmas generated in the laboratory.

    The study was published in the renowned journal “Nature Communications”.

    For their experiment, the physicists used a cloud of rubidium atoms that was cooled down in an ultra-high vacuum to about 100 microkelvin - 0.0001 degrees above absolute zero. Subsequently, they excited some of these atoms into a so-called Rydberg state using lasers. “In this process, the outermost electron in each case is brought into far-away orbits around the atomic body,” explains Professor Herwig Ott, who researches ultracold quantum gases and quantum atom optics at TU Kaiserslautern. “The orbital radius of the electron can be more than one micrometre, making the electron cloud larger than a small bacterium.” Such highly excited atoms are also formed in interstellar space and are chemically extremely reactive.

    If a Rydberg atom and an atom in the ground state clash, a so-called inelastic collision occurs. “This is when the atom in the ground state dives deep into the orbit of the Rydberg electron,” explains Professor Ott. What follows is that the molecular dynamics of the two atoms is highly complex and leads to their separation, whereby the orbit of the electron has changed.

    “In this change of state, both the principal quantum number and the angular momentum quantum number of the electron can change,” says Philipp Geppert, who is first author of the study. Geppert explains further that based on the distribution of these final states, it is possible to gain new insights into atomic collision processes where both large and small internuclear distances are important.

    In this final state, the Rydberg electron returns to an orbit that is closer to the atomic nucleus. In the process, energy is released, which is transferred in the form of kinetic energy to both atoms involved. Due to the conservation of momentum, the atoms move apart in opposite directions.

    The scientists have developed a momentum microscope especially for this experiment to observe such motion. The basic principle is quite simple: The neutral atoms are ionised with a laser pulse and directed towards a position-sensitive detector by means of a weak electric field. The point of impact depends on the initial velocity of the atoms and thus indicates their momentum. The microscope is capable of resolving the smallest velocity differences thereby making it possible to precisely identify the final states of the individual atoms.

    This knowledge helps to understand fundamental atomic processes in plasma. Plasma is a mixture of different particles such as electrons, ions, atoms, and molecules. In research, plasma plays an important role, for example, to study the interaction between particles more closely. Since it also occurs in space, results from the laboratory can be relevant for astrophysics, for example to better understand which chemical and physical processes take place in interstellar space.

    Research on this study took place within the priority programme “Giant Interactions in Rydberg Systems”, which is funded by the German Research Foundation. This research was carried out in the OPTIMAS profile area (Landesforschungszentrum für Optik und Materialwissenschaften - State Research Centre for Optics and Materials Sciences), which has been funded as part of the state's research initiative since 2008.

    The results of the measurements and a description of the experimental setup have been published in the renowned journal Nature Communications: “Diffusive-like redistribution in state-changing collisions between Rydberg atoms and ground state atoms”; Philipp Geppert, Max Althön, Daniel Fichtner & Herwig Ott
    https://www.nature.com/articles/s41467-021-24146-0
    DOI: https://doi.org/10.1038/s41467-021-24146-0

    Questions can be directed to:
    Prof. Dr Herwig Ott
    Ultracold quantum gases and quantum atom optics / TU Kaiserslautern
    Phone: +49 0631 205-2817 E-mail: ott@physik.uni-kl.de


    Originalpublikation:

    Nature Communications: “Diffusive-like redistribution in state-changing collisions between Rydberg atoms and ground state atoms”; Philipp Geppert, Max Althön, Daniel Fichtner & Herwig Ott
    https://www.nature.com/articles/s41467-021-24146-0
    DOI: https://doi.org/10.1038/s41467-021-24146-0


    Bilder

    Professor Herwig Ott (left) and Philipp Geppert research ultracold quantum gases and quantum atom optics at Technische Universität Kaiserslautern.
    Professor Herwig Ott (left) and Philipp Geppert research ultracold quantum gases and quantum atom op ...
    Credit: Koziel/TUK
    TUK

    Professor Herwig Ott (left) and Philipp Geppert have developed a custom microscope for this purpose, with which they were able to directly measure the momenta of the atoms.
    Professor Herwig Ott (left) and Philipp Geppert have developed a custom microscope for this purpose, ...
    Credit: Koziel/TUK
    TUK


    Merkmale dieser Pressemitteilung:
    Journalisten
    Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Professor Herwig Ott (left) and Philipp Geppert research ultracold quantum gases and quantum atom optics at Technische Universität Kaiserslautern.


    Zum Download

    x

    Professor Herwig Ott (left) and Philipp Geppert have developed a custom microscope for this purpose, with which they were able to directly measure the momenta of the atoms.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).