idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
15.07.2021 19:04

Long-term climate regulation changed with the proliferation of marine animals and terrestrial plants

Petra Giegerich Kommunikation und Presse
Johannes Gutenberg-Universität Mainz

    Geoscientific study traces carbon-silicon cycle over three billion years on the basis of lithium isotope levels

    Earth's climate was relatively stable for a long period of time. For three billion years, temperatures were mostly warm and carbon dioxide levels high – until a shift occurred about 400 million years ago. A new study suggests that the change at this time was accompanied by a fundamental alteration to the carbon-silicon cycle. "This transformation of what was a consistent status quo in the Precambrian era into the more unstable climate we see today was likely due to the emergence and spread of new life forms," said Professor Philip Pogge von Strandmann, a geoscientist at Johannes Gutenberg University Mainz (JGU). Together with researchers from Yale University, notably Boriana Kalderon-Asael and Professor Noah Planavsky, he has traced the long-term evolution of the carbon-silicon cycle with the help of lithium isotopes in marine sediments. This cycle is regarded as a key mechanism controlling the Earth's climate, as it regulates carbon dioxide levels and, with it, temperature. The researchers' findings have been published recently in NATURE.

    The carbon-silicon cycle is the key regulator of climate

    The carbon-silicon cycle has kept Earth's climate stable over long periods of time, despite extensive variations in solar luminosity, in atmospheric oxygen concentrations, and the makeup of the Earth's crust. Such a stable climate created the conditions for long-term colonization of the Earth by life and allowed initially simple and later complex life forms to develop over billions of years. The carbon-silicon cycle contributes to this by regulating the level of carbon dioxide in the atmosphere. Silicate rock is transformed into carbonate rock as a result of weathering and sedimentation, and carbonate rock is transformed back into silicate rock by, among other things, volcanism. When silicate rock is converted to carbonate rock, carbon dioxide is removed from the atmosphere, while the reverse process releases carbon dioxide once again. "We consider this to be the main mechanism by which Earth's climate is stabilized over the long term," explained Pogge von Strandmann.

    To trace long-term carbon-silicon cycles back in time and gain a better understanding of the precise relationships governing Earth's climate, the research team studied the ratio of lithium isotopes in marine carbonates. Lithium is present only in silicate rocks and their silicate and carbonate weathering products. The research team analyzed more than 600 samples deposited as sediments in shallow primeval marine waters and obtained from more than 100 different rock strata from around the world, including from Canada, Africa and China. "We used these samples to create a new database covering the past three billion years," Pogge von Strandmann pointed out.

    These data show that the ratio of lithium-7 to lithium-6 isotopes in the oceans was low from three billion years ago to 400 million years ago, and then suddenly increased. It was precisely at this time that land plants evolved, while simultaneously marine animals with skeletons composed of silicon, such as sponges and radiolarians, spread throughout the oceans. "Both played a role, but as yet we do not know exactly how the processes are coupled," Professor Philip Pogge von Strandmann added.

    The displacement of 'clay factories' to the land influences the carbon-silicon cycle

    Research findings suggest that there was a massive change to the extent of the formation of clay, a secondary silicate rock composed of very fine particles, in the Earth's past – possibly due to an increase in clay formation on land and a decrease in the oceans. Clay formation is a crucial component of the carbon-silicon cycle and it influences the ratio of lithium isotopes. On land it is caused by the extensive weathering of silicate rocks, but in the oceans a range of different processes is involved. Increased continental clay formation is thought to have lowered carbon dioxide levels in the atmosphere. In contrast, oceanic clay formation, known as "reverse weathering", releases CO₂, so its decline will similarly have lowered atmospheric carbon dioxide levels.

    According to the authors of the NATURE paper, this suggests that the mode of climate regulation on Earth as well as the primary location where that process occurs has changed dramatically through time: "The shift from a Precambrian Earth state to the modern state can probably be attributed to major biological innovations – the radiation of sponges, radiolarians, diatoms and land plants." The result of this modification of climate regulation has been apparent ever since in the form of the frequent alternation between cold glacial periods on the one hand and warmer periods on the other. However, this climate instability, in turn, helps to accelerate evolution.

    Image:
    https://download.uni-mainz.de/presse/09_geowiss_sedimentgeochemie_lithium.jpg
    Boriana Kalderon-Asael collecting 450-million-year-old rock samples in Pennsylvania, USA
    photo/©: Ashleigh Hood


    Wissenschaftliche Ansprechpartner:

    Professor Dr. Philip Pogge von Strandmann
    Sedimentary geochemistry group
    Institute of Geosciences
    Johannes Gutenberg University Mainz (JGU)
    55099 Mainz, GERMANY
    phone +49 6131 39-21201
    e-mail: ppoggevo@uni-mainz.de
    https://www.geosciences.uni-mainz.de/isotope-geology/team-isotope-geology/


    Originalpublikation:

    B. Kalderon-Asael et al., A lithium-isotope perspective on the evolution of carbon and silicon cycles, Nature 595, 394-398, 14 July 2021,
    DOI: 10.1038/s41586-021-03612-1
    https://www.nature.com/articles/s41586-021-03612-1


    Weitere Informationen:

    https://www.geosciences.uni-mainz.de/ – JGU Institute of Geosciences


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, jedermann
    Chemie, Geowissenschaften, Meer / Klima
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).