idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Thema Corona

Imagefilm
Science Video Project
idw-News App:

AppStore



Teilen: 
22.07.2021 15:16

Antimaterie aus der Laserzange: Team entwickelt neue Methode für Erforschung astrophysikalischer Prozesse im Labor

Simon Schmitt Kommunikation und Medien
Helmholtz-Zentrum Dresden-Rossendorf

    Ein internationales Physikteam unter Mitwirkung des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) hat ein neues Konzept vorgeschlagen, mit dem sich ausgewählte kosmische Extremprozesse künftig möglicherweise im Labor untersuchen lassen. Ein spezielles Setup aus zwei hochintensiven Laserstrahlen könnte Bedingungen erzeugen, ähnlich wie sie etwa in der Nähe von Neutronensternen herrschen. Dabei wird ein Antimaterie-Jet erzeugt und sehr effizient beschleunigt, wie die Expert*innen im Fachmagazin Communications Physics (DOI: 10.1038/s42005-021-00636-x) berichten.

    Basis des neuen Konzepts ist ein winziger Block aus Kunststoff, durchzogen von mikrometerfeinen Kanälen. Er fungiert als Zielscheibe für zwei Laser. Diese feuern simultan ultrastarke Pulse auf den Block, einer von rechts, der andere von links – der Block wird regelrecht in die Laserzange genommen. „Wenn die Laserpulse in die Probe eindringen, beschleunigt jeder von ihnen eine Wolke aus extrem schnellen Elektronen“, erläutert HZDR-Physiker Toma Toncian. „Diese beiden Elektronenwolken rasen dann mit voller Wucht aufeinander zu und interagieren mit dem ihnen entgegenkommenden Laserpuls.“ Der anschließende Zusammenprall ist so heftig, dass dabei extrem viele Gamma-Quanten entstehen – Lichtteilchen mit einer Energie, die sogar noch höher als die von Röntgenstrahlung ist.

    Das Gewimmel an Gammaquanten ist derart groß, dass die Lichtteilchen unweigerlich miteinander kollidieren. Dabei passiert etwas Verrücktes: Laut Einsteins berühmter Formel E=mc2 kann sich die Lichtenergie in Materie verwandeln. In diesem Fall sollten vor allem Elektron-Positron-Paare entstehen. Positronen sind die Antiteilchen von Elektronen. Das Besondere: „Dieser Prozess wird von sehr starken Magnetfeldern begleitet“, beschreibt Projektleiter Alexey Arefiev, Physiker an der University of California in San Diego. „Die Magnetfelder können die Positronen zu einem Strahl bündeln und stark beschleunigen.“ In Zahlen: Auf einer Strecke von nur 50 Mikrometern sollten die Teilchen eine Energie von einem Gigaelektronenvolt (GeV) erreichen – eine Größe, für die es für gewöhnlich einen kompletten Teilchenbeschleuniger braucht.

    Erfolgreiche Computersimulation

    Um zu prüfen, ob die ungewöhnliche Idee funktionieren könnte, testete das Team sie in einer aufwändigen Computersimulation. Das Ergebnis ist ermutigend, im Prinzip sollte das Konzept umsetzbar sein. „Mich hat überrascht, dass die Positronen, die am Ende entstehen, in der Simulation zu einem hochenergetischen und gebündelten Strahl geformt wurden“, freut sich Arefiev. Und: Die neue Methode sollte deutlich effizienter sein als die bisherigen Ideen, bei denen nur ein Laserpuls auf eine Zielscheibe gefeuert wird: Gemäß der Simulation sollte der „Laser-Doppelschlag“ bis zu 100.000 Mal mehr Positronen erzeugen können als das Konzept der Einfachbehandlung.

    „Außerdem müssten die Laser bei uns nicht ganz so stark sein wie bei anderen Konzepten“, erläutert Toncian. „Dadurch ließe sich die Idee vermutlich leichter in die Praxis umsetzen.“ Allerdings gibt es nur wenige Plätze auf der Welt, an denen sich die Methode umsetzen ließe. Geeignet wären vor allem ELI-NP (Extreme Light Infrastructure Nuclear Physics), eine noch junge Laseranlage in Rumänien, weitgehend finanziert von der Europäischen Union. Sie verfügt über zwei ultrastarke Laser, die simultan auf ein Ziel feuern können – die Grundvoraussetzung für das neue Verfahren.

    Erste Tests in Hamburg

    Wesentliche Vorversuche aber könnten zuvor in Hamburg stattfinden: Dort steht mit dem European XFEL der leistungsstärkste Röntgenlaser der Welt. Das HZDR führt hier ein Nutzerkonsortium namens HIBEF an, das seit einiger Zeit Materie in extremen Zuständen ins Visier nimmt. „Bei HIBEF entwickeln Fachleute des HZDR gemeinsam mit dem Helmholtz-Institut Jena eine Plattform, mit der sich experimentell überprüfen lässt, ob sich die Magnetfelder tatsächlich so ausbilden wie in unseren Simulationen vorausgesagt“, erklärt Toma Toncian. „Das sollte sich mit den starken Röntgenblitzen des European XFEL gut analysieren lassen.“

    Für die Astrophysik wie auch für die Kernphysik könnte das neue Verfahren überaus brauchbar sein. Denn auch bei manchen Extremprozessen im All dürften Unmengen von Gamma-Quanten entstehen, die sich dann flugs wieder zu hochenergetischen Teilchen materialisieren. „Solche Prozesse dürften sich unter anderem in der Magnetosphäre von Pulsaren abspielen, also von schnell rotierenden Neutronensternen“, sagt Alexey Arefiev. „Mit unserem neuen Konzept ließen sich solche Phänomene zumindest ansatzweise im Labor simulieren, wodurch wir sie dann besser verstehen würden.“

    Publikation:
    Y. He, T. Blackburn, T. Toncian, A. Arefiev: Dominance of γ-γ electron-positron pair creation in a plasma driven by high-intensity lasers, in Communications Physics, 2021 (DOI: 10.1038/s42005-021-00636-x)

    Weitere Informationen:
    Dr. Toma Toncian
    Institut für Strahlenphysik am HZDR
    Tel.: +49 40 8998 6869 | E-Mail: t.toncian@hzdr.de

    Medienkontakt:
    Simon Schmitt | Leitung und Pressesprecher
    Abteilung Kommunikation und Medien
    Tel.: +49 351 260 3400 | E-Mail: s.schmitt@hzdr.de

    Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
    • Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
    • Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
    • Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
    Das HZDR entwickelt und betreibt große Infrastrukturen, die auch von externen Messgästen genutzt werden: Ionenstrahlzentrum, Hochfeld-Magnetlabor Dresden und ELBE-Zentrum für Hochleistungs-Strahlenquellen.
    Es ist Mitglied der Helmholtz-Gemeinschaft, hat sechs Standorte (Dresden, Freiberg, Grenoble, Leipzig, Schenefeld bei Hamburg) und beschäftigt knapp 1.200 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 170 Doktoranden.


    Wissenschaftliche Ansprechpartner:

    Dr. Toma Toncian
    Institut für Strahlenphysik am HZDR
    Tel.: +49 40 8998 6869 | E-Mail: t.toncian@hzdr.de


    Originalpublikation:

    Y. He, T. Blackburn, T. Toncian, A. Arefiev: Dominance of γ-γ electron-positron pair creation in a plasma driven by high-intensity lasers, in Communications Physics, 2021 (DOI: 10.1038/s42005-021-00636-x)


    Weitere Informationen:

    https://www.hzdr.de/presse/antimatter_from_laser_pincers


    Merkmale dieser Pressemitteilung:
    Journalisten
    Energie, Physik / Astronomie
    überregional
    Forschungsergebnisse
    Deutsch


    Die Photonen befinden sich ab dem Zeitpunkt des Aufeinandertreffens beider Laser so dicht beieinander, dass sie zusammenstoßen und dabei Materie-Antimaterie-Paare erzeugen können.


    Zum Download

    x

    Am European XFEL in Schenefeld bei Hamburg bauen Forscher des HZDR die Helmholtz International Beamline for Extreme Fields (HIBEF) auf. Dafür installieren die Dresdner Wissenschaftler zwei Hochleistungslaser an der HED-Station (High Energy Density).


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).