idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Thema Corona

Imagefilm
Science Video Project
idw-News App:

AppStore



Teilen: 
23.09.2021 17:00

Revealing the secrets of an exotic nucleus

Dr. Gertrud Hönes Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Kernphysik

    The exotic nucleus tin-100 is challenging to access experimentally, but ab initio calculations provide reliable results. This is shown by new precision mass measurements of indium isotopes in the vicinity of tin in the nuclear chart, using sophisticated techniques at CERN. Physicists from Klaus Blaum's department at the MPI for Nuclear Physics played a major role in this. Achim Schwenk's Max Planck Fellow group at the TU Darmstadt contributed to the theoretical calculations.

    The tin isotope with the mass number 100 is the heaviest possible atomic nucleus with the same number of protons and neutrons. The properties of this atomic nucleus are a "Holy Grail" of nuclear physics. With “magic” number 50, the 50 neutrons and 50 protons fully occupy their respective shells and tin-100 is therefore a doubly magic nucleus. Actually, doubly magic nuclei are particularly stable, but for heavy nuclei like tin-100 this is only true in comparison to their neighbouring nuclei. Tin-100 is short-lived and decays to indium-100 (with 49 protons and 51 neutrons). This extremely exotic nucleus is therefore very difficult to produce in sufficient quantities and largely eludes direct, precise measurements. In fact, there are presently two contradictory values for the decay energy of tin-100 in the literature.

    To learn more about the properties of this special nucleus, theoretical calculations provide a possible avenue. But how reliable are the values obtained in this way? This can be checked using precise mass measurements of neighbouring nuclei in the nuclear chart.

    At the ISOLDE isotope separator at CERN, it was possible to produce the indium isotopes 99, 100 and 101 (the latter in the ground state and an excited metastable state), which are also quite short-lived and neutron-deficient, separate them and feed them to the ISOLTRAP mass spectrometer. This consists of a time-of-flight instrument and a downstream Penning-trap system, with which the experimenters determined the masses of these nuclei with high precision. From this, they deduced their binding energies – because the mass of an atomic nucleus is the sum of the masses of the contained nucleons, i.e., the protons and neutrons, and the binding energy. The value for indium-100 and the literature values for the decay energy result in strongly contradictory values for the binding energy of tin-100.

    In parallel, the theory team performed calculations of indium, tin and neighbouring atomic nuclei around the "Holy Grail" tin-100 using state-of-the-art ab initio methods and two- and three-nucleon interactions. The results of all methods for indium as well as for more neutron-rich tin isotopes show the same trends and agree well with the experimental data. This makes the predictions for tin-100 very trustworthy. Somewhat surprisingly, both the theoretical predictions and the experimental data support the older and not the newer, actually more accurate decay energy measurement.


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Klaus Blaum (MPI für Kernphysik)
    Phone: +49 6221 516-859
    Email: klaus.blaum@mpi-hd.mpg.de

    Prof. Achim Schwenk (TU Darmstadt)
    Phone: +49 6151 16-21550
    Email: schwenk@physik.tu-darmstadt.de


    Originalpublikation:

    Mass measurements of 99–101In challenge ab initio nuclear theory of the nuclide 100Sn,
    M. Mougeot, D. Atanasov, J. Karthein, R.N. Wolf, P. Ascher, K. Blaum, K. Chrysalidis, G. Hagen, J.D. Holt, W.J. Huang, G.R. Jansen, I. Kulikov, Yu.A. Litvinov, D. Lunney, V. Manea, T. Miyagi, T. Papenbrock, L. Schweikhard, A. Schwenk, T. Steinsberger, S.R. Stroberg, Z.H. Sun, A. Welker, F. Wienholtz, S.G. Wilkins, and K. Zuber,
    Nature Physics 23.09.2021, DOI: 10.1038/s41567-021-01326-9


    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wissenschaftler
    Physik / Astronomie
    überregional
    Forschungsergebnisse
    Englisch


    The exotic tin-100 and some of its measured and calculated neighbouring isotopes as an enlarged section of the nuclear chart (the blue open bars mark the magic numbers). The purple arrow shows the decay of tin-100 to indium-100.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).