idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
29.09.2021 11:00

Melting glasses from unmeltable compounds

Sebastian Hollstein Abteilung Hochschulkommunikation/Bereich Presse und Information
Friedrich-Schiller-Universität Jena

    Chemists at the University of Jena are developing a way of melting normally unmeltable metal-organic framework compounds – so-called MOFs. This allows the melt-based production of glass components for applications in energy and environmental technology.

    Glasses are an indispensable part of everyday life. One of the most important reasons for this is that glass objects can be manufactured almost universally and inexpensively in a wide variety of shapes and sizes using their corresponding melts. Processing in the (viscous) liquid phase offers a versatility that can hardly be achieved with other materials. However, this presupposes that the material from which the glass is made in terms of its chemical composition can be melted at all.

    So-called metal-organic framework compounds – in short MOFs – have attracted a great deal of interest in recent years. Due to their special properties, they are considered to have great potential for future applications in energy and environmental technology, but also as sensor components and in the bio and life sciences. For example, MOFs can be used as starting materials for filter membranes for separating gases in technical combustion processes or for water treatment. The basis for the multitude of possible applications is above all one outstanding property of MOFs: their high and largely controllable porosity. MOF substances consist of inorganic particles that are connected by organic molecules to form a network of pores. As MOFs are predominantly in powder form, a primary challenge of the field is to produce bulk components. This is where glasses come into play.

    Trade-off between properties and processability

    But apart from a few exceptions, the porosity of all things prevents the materials from being meltable and, thus, processable into components of the desired shape. Chemists from the Friedrich Schiller University in Jena, Germany, and the University of Cambridge, United Kingdom, have now found a solution to this problem. They report on their research results in the current issue of "Nature Communications".

    In order to produce components for industrial applications from MOFs, they can be processed into so-called hybrid glasses, for example. To do this, however, you have to melt them down - a process that is not straightforward in this specific case. So far, only a handful of candidates of this class of substances have actually been demonstrated to be meltable. "In most known MOF materials, the high porosity is one of the reasons that – upon heating – they thermally decompose before reaching their melting point, that is, they burn," explains Vahid Nozari, doctoral student at the Laboratory of Glass Science of the University of Jena. It is precisely the property that makes these materials so interesting that also prevents them from being processed using the glass route.

    Identifying combinations of ionic liquids, MOF matrices and melting conditions

    So how do you make a non-meltable material meltable in order to shape and process it in its liquid state? The team led by Jena professor Lothar Wondraczek has now found an answer to this question. “We filled the pores with an ionic liquid that stabilizes the inner surface in such a way that the substance can finally melt before it even decomposes,” explains Wondraczek. The researchers were able to show how normally non-meltable substances from the MOF family of zeolitic imidazolate frameworks (ZIFs) can actually be converted into a liquid state and, finally, a glass. “In this way, the desired component can be obtained, for example, in the form of a membrane or a disk. Residues of the employed ionic liquid can then be washed out after shaping."

    The key to future applications are the interactions taking place between the ionic liquid and the MOF material. These determine the reversibility of the process, i.e., the possibility of washing out the auxiliary liquid after the melting process. If the reactions are not adapted, either the pore surface is not adequately stabilized or there is an irreversible chemical bond between the MOF and parts of the ionic liquid. Therefore, ideal combinations of liquids, matrix materials and melting conditions must be identified with a view to the desired application, so that large-volume objects would become possible.


    Wissenschaftliche Ansprechpartner:

    Prof. Dr Lothar Wondraczek
    Otto-Schott-Institut für Materialforschung der Universität Jena
    Fraunhoferstraße 6, 07743 Jena
    Tel.: 03641 / 948500
    E-Mail: lothar.wondraczek[at]uni-jena.de


    Originalpublikation:

    V. Nozari, C. Calahoo, J. M. Tuffnell, D. A. Keen, T. D. Bennett und L. Wondraczek (2021): Ionic liquid facilitated melting of the metal-organic framework ZIF-8, Nature Communications, DOI: 10.1038/s41467-021-25970-0


    Bilder

    Vahid Nozari at the University of Jena uses a microscope to examine the new synthetic glass, which consists of a non-fusible metal-organic framework (MOF) compound.
    Vahid Nozari at the University of Jena uses a microscope to examine the new synthetic glass, which c ...
    Photo: Jens Meyer/Uni Jena

    Vahid Nozari of the University of Jena places a sample of material under a microscope while examining a new synthetic glass made of a non-fusible metal-organic frameworks (MOF) compound.
    Vahid Nozari of the University of Jena places a sample of material under a microscope while examinin ...
    Photo: Jens Meyer/Uni Jena


    Merkmale dieser Pressemitteilung:
    Journalisten
    Chemie, Physik / Astronomie, Umwelt / Ökologie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse
    Englisch


     

    Vahid Nozari at the University of Jena uses a microscope to examine the new synthetic glass, which consists of a non-fusible metal-organic framework (MOF) compound.


    Zum Download

    x

    Vahid Nozari of the University of Jena places a sample of material under a microscope while examining a new synthetic glass made of a non-fusible metal-organic frameworks (MOF) compound.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).