idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
25.10.2021 15:47

Wie das „Thermostat“ im Gehirn drohende Überhitzung misst

Julia Bird Unternehmenskommunikation
Universitätsklinikum Heidelberg

    Forschende des Universitätsklinikums Heidelberg beschreiben aktuell in „Neuron“, woher wärmeempfindliche Nervenzellen im Gehirn die nötigen Informationen beziehen / „Ausgelagerte“ Sensor-Proteine erlauben angepasste Wärmeregulierung

    Die Mechanismen, mit denen der Körper Temperatur misst und die eigene Körperwärme reguliert sind lebenswichtig, aber noch wenig verstanden. Bahnbrechend war daher die Entdeckung des ersten Wärmesensors an Nervenzellen der Haut, für die der US-amerikanische Molekularbiologe David Julius den diesjährigen Nobel-Preis für Medizin erhielt. Doch nicht nur in der Haut, sondern auch im Gehirn ist mit dem Protein TRPM2 ein sehr ähnlicher Wärmesensor aktiv, wie Wissenschaftler des Pharmakologischen Instituts am Universitätsklinikum Heidelberg bereits entdeckten. Nun haben sie den Mechanismus rund um das Sensor-Protein TRPM2 an Mäusen weiter aufgeklärt und in der Fachzeitschrift „Neuron“ veröffentlicht. Sie zeigten: TRPM2 ist „outgesourct“. Es sitzt nicht auf den wärmeempfindlichen Nervenzellen selbst, sondern weiter verteilt an den Kontaktstellen benachbarter Neurone. Das bedeutet – technisch gesehen – mehr Einstellungsmöglichkeiten am körpereigenen Thermostat.

    „Die Platzierung der Wärmesensoren an den Orten der Signalweitergabe zwischen den Nervenzellen, den Synapsen, erlaubt eine Feinjustierung der Thermoregulation“, erläutert Arbeitsgruppenleiter Prof. Dr. Jan Siemens, der vier Jahre im Labor von Nobelpreisträger Julius an der Universität von Kalifornien, San Francisco, forschte. Synapsen sind hauchfeine, weit verästelte Zellausläufer, mit denen Nervenzellen Kontakt zu ihren Nachbarn aufnehmen. Sie leiten Signale in der Regel nur von einer Zelle zur anderen weiter. Anders im sogenannten Hypothalamus, der Gehirnregion, die als Thermostat fungiert: Bei steigender Temperatur löst TRPM2 auf der Oberfläche dieser Synapsen selbst ein Signal an die wärmesensitiven Nervenzellen aus, wie die Wissenschaftlerinnen und Wissenschaftler zu ihrer Überraschung in Versuchen mit Zellen aus diesem Hirnbereich feststellten.

    Auf den eigentlich wärmesensitiven Neuronen spielt TRPM2 dagegen keine Rolle. „Ob wärmesensitive Neuronen das Signal zur Abkühlung weitergeben und in welcher Dringlichkeit, ergibt sich wahrscheinlich aus der Summe aller eingehenden aktivierenden und hemmenden Signale aus dem Netzwerk“, vermutet Siemens. „Denn es treffen z.B. gleichzeitig Signale zu Energiehaushalt oder Hormonstatus, die ebenfalls Einfluss auf die Wärmeregulation haben, ein und werden miteinander verrechnet.“ Dank der ausgelagerten Wärmesensoren bestimme nicht die begrenzte Anzahl wärmesensitiver Neurone, sondern das gesamte Netzwerk der umgebenden Nervenzellen die Wärmesensitivität. Das mache die Wärmeregulation besser an die jeweiligen Bedürfnisse anpassbar.

    Molekulare Abläufe der Wärmeregulation noch wenig verstanden

    Übersteigt die Temperatur im Gehirn einen für den Körper noch gesunden Wert, gibt der Hypothalamus, genauer dessen präoptische Region, das Signal zur Abkühlung. Weicht die aktuelle Körpertemperatur vom Sollwert ab, der sich je nach Spezies leicht unterscheiden kann, werden im Körper entsprechende Gegenmaßnahmen eingeleitet. Das Team um Prof. Siemens fand mit dem Protein TRPM2 2016 den ersten Wärmesensor, mit dem das körpereigene Thermostat die drohende Überhitzung überhaupt wahrnimmt: TRPM2 lässt bei Mäusen ab rund 39 Grad Celsius, wie wahrscheinlich auch bei Menschen, Kalzium in die Synapsen fluten und setzt eine Signalkette in Gang, die schließlich dazu führt, dass der Körper Wärme ableitet, beispielsweise durch geweitete Blutgefäße in der Haut. Die genauen Abläufe sind noch wenig verstanden. Die Erkenntnisse aus Heidelberg tragen dazu bei, die Mechanismen Stück für Stück aufzuklären


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Jan Siemens
    Pharmakologisches Institut Heidelberg
    Im Neuenheimer Feld 366
    69120 Heidelberg
    E-Mail: jan.siemens@pharma.uni-heidelberg.de


    Originalpublikation:

    Kamm GB, Boffi JC, Zuza K, et al. A synaptic temperature sensor for body cooling. Neuron 2021 109, 3283–3297 
    https://doi.org/10.1016/j.neuron.2021.10.001


    Weitere Informationen:

    http://www.medizinische-fakultaet-hd.uni-heidelberg.de/Siemens.102639.0.html Medizinische Fakultät Heidelberg Jan Siemens
    http://siemenslab.de/ Labor Siemens


    Bilder

    Prof. Dr. Jan Siemens, Pharmakologisches Institut Heidelberg. Quelle: Universitätsklinikum Heidelberg
    Prof. Dr. Jan Siemens, Pharmakologisches Institut Heidelberg. Quelle: Universitätsklinikum Heidelber ...


    Merkmale dieser Pressemitteilung:
    Journalisten, Lehrer/Schüler, Studierende, Wirtschaftsvertreter, Wissenschaftler, jedermann
    Medizin
    überregional
    Forschungsergebnisse
    Deutsch


     

    Prof. Dr. Jan Siemens, Pharmakologisches Institut Heidelberg. Quelle: Universitätsklinikum Heidelberg


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).