idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
20.01.2022 11:17

Klein aber Oho! – Forscherteam veröffentlicht neueste Erkenntnisse über Flugleistungen von Kleinstinsekten

Martina Kaminski Presse- und Kommunikationsstelle
Universität Rostock

    Seit einigen Jahren gibt es in der Wissenschaft ein verstärktes Interesse, die Fortbewegung von Tieren, die nur wenige Millimeter groß sind, zu verstehen. Das internationale Wissenschaftlerteam aus Russland, Japan, China, Vietnam und Deutschland, dem auch Professor Fritz-Olaf Lehmann, Leiter des Lehrstuhls für Tierphysiologie an der Universität Rostock, angehört, ist den Geheimnissen des rasanten Flugs dieser Kleinstinsekten nun nähergekommen.

    Eine Erklärung dafür könnten die unverwechselbaren Flügelbewegungen und die extrem leichten, aus Borsten bestehenden Flügel dieser Kleinstinsekten sein. Im Mittelpunkt ihrer Forschung stand dabei der Zwergkäfer Paratuposa placentis, der weniger als einen halben Millimeter groß ist (395 Mikrometer). Die Familie der Zwergkäfer oder Federflügler (Ptiliidae) umfassen weltweit etwa 500 Arten, mit Körpergrößen von weniger als 1,3 Millimeter. In der biologischen Aerodynamik sind Zwergkäfer durch ihre speziellen Anpassungen der Flügel von besonderem Interesse.

    Wie schnell ein Insekt fliegt, hängt im Allgemeinen von seiner Größe ab: je größer das Insekt, desto mehr Flugkraft kann es erzeugen und desto schneller ist die Fluggeschwindigkeit. Sehr kleine Tiere haben es dabei besonders schwer, weil die Zähigkeit der Luft eine größere Rolle spielt als bei größeren Insekten und die Vorwärtsbewegung des Tiers stark abbremst. Einige Miniaturinsekten widersprechen jedoch dieser Regel. Ein Beispiel ist der kleine Zwergkäfer, der ähnliche Fluggeschwindigkeiten erreichen kann wie Insekten, die dreimal so groß sind. Die Frage, so Fritz-Olaf Lehmann, sei es, warum diese Tiere Flügel aus einzelnen Haaren mit Zwischenräumen besitzen um sich damit fortzubewegen. Spannend sei auch, ob derartige Flügel einen Vorteil für den Flug haben oder nicht. „Die Hinterflügel des Käfers bewegen sich in besonderer Art und Weise, nämlich im Sinne einer liegenden Acht. Der Flügelschlagzyklus besteht dabei aus zwei kräftigen Halbschlägen, die eine große Aufwärtskraft erzeugen, gefolgt von zwei langsamen Erholungsschlägen in Gegenrichtung. Die vorderen, schalenartigen Deckflügel von Käfern dienen eigentlich nur zum Schutz der Hinterflügel im ruhenden Tier. Beim untersuchten Zwergkäfer schwingen jedoch auch die Deckflügel im Flug hin- und her und dämpfen so übermäßige Vibrationen des Insektenköpers.“

    Die Forscher vermuten, dass die Bewegung beborsteter Flügel zudem nicht so viel Muskelkraft erfordert wie die von schwereren Membranflügeln, wodurch die Leistung der Flugmuskulatur gleichmäßiger im einzigartigen Bewegungszyklus der Flügel verteilt wird. Diese Anpassungen könnten nach Meinung der Forscher erklären, wie sich die winzigen Insekten während des Prozesses der Miniaturisierung eine so hervorragende Flugleistung bewahren konnten. Dies könnte eine wichtige Komponente ihres evolutionären Erfolgs darstellen.
    „Es handelt sich hier um Grundlagenforschung, bei der es um das Grundverständnis der Fortbewegung von Kleinstlebewesen geht und der Frage, wie die Probleme des Fliegens bei extremer Reduzierung der Körpergröße gelöst werden“, unterstreicht Fritz-Olaf Lehmann, ein Spezialist für die Aerodynamik des Insektenflugs.

    Die publizierten Ergebnisse leisten darüber hinaus einen wichtigen Beitrag für andere Forschungsbereiche, wie beispielsweise der Bionik, die technische Herausforderungen nach dem Vorbild biologischer Funktionen zu lösen versucht. Für Professor Sven Grundmann, Leiter des Lehrstuhls für Strömungsmechanik an der Universität Rostock, sei das besonders reizvoll, „weil es weniger um die eigene Erfindung als um das Enträtseln existierender optimierter Systeme geht. Im Fall fliegender Insekten beispielsweise sind die grundlegenden strömungsmechanischen Abläufe zwar verstanden. Aber je mehr Details zutage gefördert werden, desto mehr Detaillösungen müssen erkannt und begriffen werden.“ Er ergänzt: „Die geringe Größe des Zwergkäfers und seine hohen Flügelschlagfrequenzen fordern unsere Methoden bis an die Grenzen.“
    Neben der Strömungsmechanik sind bei der Umsetzung biologischer Lösungen für technische Nachbauten weitere Ingenieurdisziplinen involviert. Dies betreffe die Mechanik der Baumaterialien von Körpern und Flügeln, die Kinematik und Dynamik der Muskeln und Antriebe, aber auch die Sensorik und Regelcharakteristik des gesamten Flugsteuerungssystems. „Die kleinsten Insekten sind gerade deswegen besonders spannend, weil die Systeme, insbesondere das neuronale System, vergleichsweise einfach sind und noch am ehesten die Chance bieten, sie beispielsweise mit künstlicher Intelligenz nachzubilden“, so Sven Grundmann.

    Bildunterschrift zu Foto 1:
    Der Zwergkäfer Paratuposa placentis (links) besitzt vordere schalenartige Deckflügel und aus etwa 42 Haaren bestehende Hinterflügel für den Flug. Er hat eine Körperlänge von nur 395 Mikrometern. Er ist damit etwa gleich groß wie die einzellige Amöbe Amoeba proteus (rechts) (Foto: Alexey A. Polilov, Universität Moskau).

    Video 1 und 2: Zwergkäfer Paratuposa placentis in Aktion. Die Hinterflügel des Käfers bewegen sich im Sinne einer liegenden Acht. Der Flügelschlagzyklus besteht dabei aus zwei kräftigen Halbschlägen, die eine große Aufwärtskraft erzeugen, gefolgt von zwei langsamen Erholungsschlägen in Gegenrichtung (Quelle: Alexey A. Polilov, Universität Moskau)
    Die Videos zur Pressemeldung, finden Sie unter folgendem Link:
    https://www.nature.com/articles/s41586-021-04303-7


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Fritz-Olaf Lehmann
    Universität Rostock
    Institut für Biowissenschaften
    Tierphysiologie
    Tel.: +49 381 498-6300
    E-Mail: fritz.lehmann@uni-rostock.de
    Homepage: https://www.tierphysiologie.uni-rostock.de/


    Originalpublikation:

    Originalveröffentlichung: Farisenkov, S. E., Kolomenskiy, D., Petrov, P.N., Engels, T., Lapina, N. A., Lehmann, F.-O., Onishi, R., Liu, H., and Polilov, A. A. Novel flight style and light wings boost flight performance of tiny beetles. Nature (2022).
    https://doi.org/10.1038/s41586-021-04303-7
    https://www.nature.com/articles/s41586-021-04303-7


    Bilder

    Die Bildüberschrift befindet sich im Text
    Die Bildüberschrift befindet sich im Text
    Alexey A. Polilov
    Universität Moskau

    Simulierte Luftströmung und Luftdruck um die Flügel des Zwergkäfers Paratuposa placentis
    Simulierte Luftströmung und Luftdruck um die Flügel des Zwergkäfers Paratuposa placentis
    Grafik: Alexey A. Polilov
    Universität Moskau


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler, jedermann
    Biologie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Die Bildüberschrift befindet sich im Text


    Zum Download

    x

    Simulierte Luftströmung und Luftdruck um die Flügel des Zwergkäfers Paratuposa placentis


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).