idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
26.01.2022 12:40

Kohärente Überlagerung von kernangeregten Zuständen in Molekülen beobachtet

Adriane Koller Referat Hochschulkommunikation
Technische Universität Dortmund

    Juniorprofessor Wolfram Helml von der Fakultät Physik der TU Dortmund hat zusammen mit einem internationalen Forschungsteam neue Beobachtungen im Bereich der Photochemie molekularer Quantensysteme gemacht. Mit einer Art Stoppuhr für ultraschnelle Elektronenprozesse in Atomen ist es ihnen gelungen, kohärente Überlagerungen von kernangeregten Zuständen in Molekülen zu beobachten und zu kontrollieren. Beteiligt waren Wissenschaftler*innen von Forschungsinstituten in den USA, Deutschland, der Schweiz und Großbritannien. Die Ergebnisse wurden jüngst im renommierten Journal „Science“ veröffentlicht.

    Elektronen können sich in einem Überlagerungszustand befinden, in dem sie quantenmechanisch miteinander interferieren, sich quasi abgestimmt aufeinander verstärken oder auslöschen. Die Beobachtung dieses Phänomens muss – da Elektronenzustände sich extrem schnell bewegen – im Bereich von Attosekunden stattfinden, einem unvorstellbar kurzen Zeitraum: Eine Attosekunde ist 10-18 Sekunden kurz, das ist so viel kürzer als eine Sekunde, wie eine Sekunde kürzer ist als das gesamte Alter des Universums.

    Zur Beobachtung solch ultraschneller Prozesse hat das Team eine Art „Stoppuhr“ genutzt, die JProf. Helml mitentwickelt hat. Dabei beobachteten sie den Auger-Meitner-Effekt, einen Abregungsprozess, der bei allen leichteren Elementen und somit auch bei organischen Molekülen vorkommt. Das Forschungsteam richtete im Experiment Röntgenstrahlung auf das Gas Stickstoffmonoxid. Ein Elektron in einer kernnahen Schale wird dadurch in einen hochenergetischen Zustand gehoben und bleibt gerade noch an das Atom gebunden – von diesem Zwischenzustand gibt es verschiedene Varianten, die der Röntgenstrahl alle zur selben Zeit im Molekül auslösen kann. Dies sind die kernangeregten Zustände des Moleküls. „Damit kein Schaden entsteht, beispielsweise das Molekül in seine Bestandteile Stickstoff und Sauerstoff zerfällt, möchte es sich schnell wieder ‚abreagieren‘“, erklärt JProf Helml. Um dies zu tun, füllt ein anderes Elektron die entstandene Lücke und wird näher an den Kern gezogen. Dadurch wird zusätzliche Energie frei, die von einem dritten Elektron aufgenommen wird und das Atom verlässt – dieses Elektron nennt man „Auger-Elektron“.

    Mit der „Stoppuhr“ konnten die Physiker*innen nun messen, wie viele Auger-Elektronen zu welchem Zeitpunkt in welchem Winkel emittiert werden und welche Energie sie dabei besitzen (siehe Grafik). Dabei entsteht eine exponentielle Verlaufskurve, bei der am Anfang sehr viele und im zeitlichen Verlauf immer weniger Elektronen emittiert werden. In dem Experiment konnte das Forschungsteam diese Messung zum ersten Mal in Stickstoffmonoxid vornehmen. Bei der Auswertung machten die Forscher*innen zudem eine ungewöhnliche Entdeckung: Zu einem Zeitpunkt, in dem die Zahl der emittierten Elektronen eigentlich abnehmen sollte, stieg sie für wenige Attosekunden erneut an; die Verlaufskurve zeigte also eine Zwischenerhöhung. Bei einer Änderung der Photonenenergie des Röntgenpulses konnten die Forscher*innen eine Modulation der Erhöhung messen, was ein Anzeichen eines kohärenten Energiezustands ist.
    „Indem wir die Photonenenergie durchstimmen, können wir die Kohärenz bewusst verstärken oder abschwächen. Dadurch können wir den Zerfall des angeregten Zustandes zeitlich kontrollieren“, erklärt JProf. Helml. „Die zeitaufgelösten Energien der emittierten Auger-Elektronen sind außerdem sehr sensible Sonden für kurzlebige Übergangszustände des Moleküls und können viel über seine grundlegenden Eigenschaften verraten.“

    Die Messungen fanden unter Federführung der Stanford-Wissenschaftler Siqi Li, Taran Driver und James P. Cryan am SLAC National Accelerator Laboratory in den USA statt. Dort steht einer von weltweit nur fünf Röntgenlasern, die den benötigten hochenergetischen Bereich abdecken. Die Beobachtungen der Forscher*innen könnten zukünftig ermöglichen, solche Überlagerungszustände gezielt herzustellen und genauer zu untersuchen. Dies könnte beispielsweise Rückschlüsse auf die genauen Abläufe bei der Beschädigung biologischer Proben wie Proteinen oder DNA erlauben oder auch die gezielte Kontrolle von Bindungsstellen in Molekülen ermöglichen.

    Zur Person
    Wolfram Helml ist seit August 2018 Juniorprofessor am Zentrum für Synchrotronstrahlung (DELTA) im Bereich Beschleuniger- und Röntgenphysik der Fakultät Physik. Er stammt aus Linz an der Donau in Österreich. Helml studierte Physik an der Rudolphina in Wien und graduierte dort mit einer Diplomarbeit im Bereich der theoretischen Teilchenphysik. Für die Dissertation wechselte er ins experimentelle Fach ans Max-Planck-Institut für Quantenoptik in Garching bei München, wo er 2012 seine Promotion mit Auszeichnung abschloss. Mit einem Marie-Curie-Stipendium der Europäischen Union ging Helml anschließend für knapp zwei Jahre an den Stanford Linear Accelerator in Kalifornien, USA, und forschte danach an der Technischen Universität München. Zuletzt leitete er das Teilprojekt Laser-driven Undulator X-ray source im Centre for Advanced Laser Applications an der Ludwig-Maximilians-Universität München.


    Wissenschaftliche Ansprechpartner:

    Jun.-Prof. Dr. Wolfram Helml
    Fa­kul­tät Physik
    Zen­trum für Synchrotronstrahlung
    E-Mail: wolfram.helml@tu-dortmund.de
    Tel.: +49 (0)231 755-5376


    Originalpublikation:

    https://www.science.org/doi/10.1126/science.abj2096


    Bilder

    Elektronen können sich in einem Überlagerungszustand befinden, in dem sie quantenmechanisch miteinander interferieren.
    Elektronen können sich in einem Überlagerungszustand befinden, in dem sie quantenmechanisch miteinan ...

    Greg Stewart/SLAC National Accelerator

    Mit einer Art Stoppuhr konnten die Physiker*innen messen, wie viele Auger-Elektronen zu welchem Zeitpunkt in welchem Winkel das Gas Stickstoffmonoxid verlassen und welche Energie sie dabei besitzen.
    Mit einer Art Stoppuhr konnten die Physiker*innen messen, wie viele Auger-Elektronen zu welchem Zeit ...

    Greg Stewart/SLAC National Accelerator Laboratory


    Anhang
    attachment icon Wolfram Helml ist Juniorprofessor für Beschleunigerphysik an der TU Dortmund.

    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Physik / Astronomie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Elektronen können sich in einem Überlagerungszustand befinden, in dem sie quantenmechanisch miteinander interferieren.


    Zum Download

    x

    Mit einer Art Stoppuhr konnten die Physiker*innen messen, wie viele Auger-Elektronen zu welchem Zeitpunkt in welchem Winkel das Gas Stickstoffmonoxid verlassen und welche Energie sie dabei besitzen.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).