idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Thema Corona

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Teilen: 
28.01.2022 15:46

Neue Erkenntnisse zur Vorhersage der Wirksamkeit von Wirkstoffen in der Arzneimittelentwicklung

Bianca Hermle Kommunikation und Medien
Universitätsklinikum Tübingen

    Arzneistoffe bestehen aus im Wirkstofflabor entwickelten Molekülen, die an ihr Ziel, meist einem Protein, binden und so ihre Wirkung entfalten. Die tatsächliche Dauer der Bindung eines Wirkstoffmoleküls an sein Zielprotein variiert je nach Wirkstoff. Die Lebensdauer des Wirkstoff-Ziel-Komplexes kann eine entscheidende Rolle für die Wirksamkeit eines Medikaments spielen, da eine lange Verweildauer am Ziel in einigen Fällen für die Wirkung des Medikaments entscheidend sein kann. Daher ermöglicht das Verständnis der zugrunde liegenden Ursachen eine bessere Entwicklung von Arzneimitteln.

    In der neuen Studie die im renommierten Wissenschaftsjournal „Nature Communications“ veröffentlicht wurde, haben Forscher der University of Eastern Finland und der Universität Tübingen die Schlüsselfaktoren identifiziert, die bei sogenannten Kinaseinhibitoren für eine lange oder kurze Verweildauer am Zielort verantwortlich sind.

    Kinasen sind Enzyme, die entweder auf oder in Zellen an der Weiterleitung von bestimmten Signalen beteiligt sind. Sie spielen zum Beispiel bei der Zellteilung eine Rolle, indem sie „Wachstumssignale“ weitergeben. Kinaseinhibitoren sind Hemmstoffe, die diese Wachstumssignale der Enzyme unterbinden. Viele dieser Hemmstoffe sind bereits für den klinischen Einsatz zugelassen, die meisten davon in der Behandlung von Krebs. "Ursprünglich wollten wir wissen, was die Ursache für die unterschiedliche Verweildauer zweier ähnlicher Kinaseinhibitoren am Zielort ist", sagt der durchführende Forscher und Erstautor Dr. Tatu Pantsar von der University of Eastern Finland.

    „Bereits in der frühen Phase der Arzneistoffentwicklung zu erkennen, welche Moleküle geeignet sind, ist ein entscheidender Faktor, da die Entwicklung von Medikamenten äußerst zeitintensiv und kostspielig ist“, sagt Prof. Dr. Stefan Laufer, Leiter der Pharmazeutischen und Medizinischen Chemie am Institut für Pharmazie der Universität Tübingen. Die Gruppe von Prof. Laufer verfügt mit dem „Tübingen Center for Academic Drug Discovery & Development“ (TüCAD2) über ein eigenes akademisches Zentrum zur Wirkstoffentwicklung von Medikamenten, dessen Mitgründer und Sprecher Prof. Laufer ist. Die Forschungsgruppe um Prof. Laufer hat bereits zahlreiche niedermolekularen Kinaseinhibitoren entwickelt, synthetisiert und enzymatisch/biologisch charakterisiert, was die jetzige Forschung ermöglichte. Aus Vorgängerprojekten fanden auch schon Inhibitoren ihren Weg bis zur Erstanwendung am Menschen.

    "In der Studie konzentrierten wir uns auf zwei niedermolekulare Kinaseinhibitoren, die in ihrer Hemmstärke am isolierten Enzymtests identisch sind, sich aber in ihrer Verweildauer am Zielenzym unterscheiden, d.h. wie lange ein einzelner niedermolekularer Kinaseinhibitor an das Zielprotein gebunden ist. Wir fanden auch heraus, dass der Inhibitor mit einer längeren Verweildauer bei Tests in Zellen wirksamer war", erläutert Dr. Pantsar.

    In der Studie untersuchten und verglichen die Forschenden die niedermolekularen Kinaseinhibitoren zusammen mit ihrem Zielprotein mithilfe von Computersimulationen, die auf finnischen Supercomputern durchgeführt wurden. Das Protein verhält sich je nach dem gebundenen Inhibitor unterschiedlich. "Die Simulationen deuten darauf hin, dass, wenn ein niedermolekularer Inhibitor an das Protein bindet, das Protein dynamischer ist, wenn der Inhibitor mit kurzer Verweilzeit daran gebunden ist. Das bedeutet im Grunde, dass sich das Protein mehr bewegt, wenn es den Hemmstoff mit kurzer Verweilzeit bindet, und weniger, wenn es den Hemmstoff mit langer Verweilzeit bindet.", erklärt Dr. Pantsar.

    Wassermoleküle haben dabei einen großen Einfluss auf die Verweildauer des Wirkstoffs am Zielort. "Diese winzigen, aber reichlich vorhandenen Wassermoleküle, die das Protein umgeben, scheinen ausschlaggebend zu sein. Ein wesentlicher Bestandteil der Bindung des Inhibitors beruht auf der Verdrängung von Wassermolekülen.

    In den Simulationen war der Inhibitor mit langer Verweildauer den Wassermolekülen weniger ausgesetzt, und die erforderliche Energie für die Wassermoleküle, um die Bindungsstelle des Inhibitors mit langer Verweildauer wieder zu besetzen, war viel höher. Dies führt zu einer höheren energetischen Barriere für die Trennung des Inhibitors von seinem Ziel und damit zu einer längeren Verweildauer des Wirkstoff-Ziel-Komplexes. Die Beobachtungen zum Verhalten des Zielproteins und zur Rolle der Wassermoleküle wurden auch mit einem strukturell vielfältigen niedermolekularen Kinaseinhibitor mit extrem kurzer Verweilzeit bestätigt. Solche Berechnungen (MD-Simulationen) wurden für diesen Typ von Inhibitoren zusammen mit Wassermolekülen erstmals durchgeführt.

    Die Ergebnisse können in den frühen Stadien der Medikamentenentwicklung nützlich sein. "Jetzt, da wir die Gründe für die Verweildauer eines Medikaments auf atomarer Ebene besser verstehen, können wir effektivere Moleküle entwerfen, die in der Arzneimittelentwicklung eingesetzt werden können, wenn eine lange Verweildauer gewünscht wird. Natürlich darf man nicht vergessen, dass die Verweildauer am Zielort nur ein Aspekt des sehr komplexen und schwierigen Prozesses der Entwicklung von Arzneimitteln ist, bei dem eine Vielzahl von Faktoren berücksichtigt werden muss", so Dr. Pantsar abschließend.

    An der University of Eastern Finland wurde die Forschung an der Fakultät für Pharmazie und innerhalb der DrugTech Research Community durchgeführt. Die Forschung wurde durch die vom CSC – IT Center for Science Finland – zur Verfügung gestellten Rechenressourcen ermöglicht. Das Projekt war integraler Bestandteil des von Prof. Laufer geleiteten „TüCAD2“, einem Format der Tübinger Exzellenzstrategie. Es belegt eindrucksvoll die Vernetzung von tiefer Grundlagenforschung mit der Anwendung und unmittelbaren Überführung in die Arzneimittelforschung.


    Wissenschaftliche Ansprechpartner:

    Universität Tübingen
    Leiter der Pharmazeutischen und Medizinischen Chemie und Sprecher des „TüCAD2“
    Institut für Pharmazie
    Professor Dr. Stefan Laufer
    Auf der Morgenstelle 8, 72076 Tübingen
    Tel. 07071 29 - 72459
    E-Mail stefan.laufer@uni-tuebingen.de

    University of Eastern Finland
    Faculty of Health Sciences, School of Pharmacy
    Dr. Tatu Pantsar
    Yliopistonranta 1 C, FI-70211 Kuopio
    Tel. +358 50 388 1062
    E-Mail tatu.pantsar@uef.fi


    Originalpublikation:

    Originaltitel der Publikation: Pantsar, T., Kaiser, P.D., Kudolo, M. et al. “Decisive role of water and protein dynamics in residence time of p38α MAP kinase inhibitors”. Nat Commun 13, 569 (2022).

    DOI: 10.1038/s41467-022-28164-4


    Merkmale dieser Pressemitteilung:
    Journalisten
    Medizin
    überregional
    Forschungs- / Wissenstransfer, Forschungsergebnisse
    Deutsch


    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).