idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
24.02.2022 11:42

Asymmetric Nanowaves

Birgit Holthaus Presse- und Öffentlichkeitsarbeit
Fritz-Haber-Institut der Max-Planck-Gesellschaft

    Scientists from the Fritz Haber Institute of the Max Planck Society, Vanderbilt University, City University of New York, University of Nebraska, and University of Iowa have just published new results on asymmetric light-matter waves in the reknowned magazine „Nature“. They have uncovered that low-symmetry crystals can support a new type of wave enabled by optical ‘shear forces’. The results offer new possibilities for compact optical technologies to enable new ways to guide light or to store information optically.

    We typically use different materials to make optical components for different functionalities such as anti-reflection coatings or lenses. In particular crystals with asymmetric structure are very useful since here light propagates in unusual ways, enabling novel optical phenomena. Yet, not all types of crystals have been explored for photonic applications. The research team from the FHI as well as renowned US research locations such as City University of New York, Vanderbilt University in Nashville, University of Nebraska and the University of Iowa explored monoclinic beta-gallium oxide. The ‘Monoclinic’ crystal class has been previously unnoticed for such studies, and they uncovered that these crystals exert shear forces on light propagating along its surface.
    “Using the infrared radiation of our institute’s free-electron laser, our experiments could access spectral ranges that are otherwise very challenging”, explains Dr. Alex Paarmann of the Department of Physical Chemistry of the FHI. “The structure of the ‘monoclinic’ crystals used in our studies looks like a distorted cuboid, where four of six sides are rectangular but two are tilted parallelograms”, Paarmann explains. “Because of this distortion, the new shear waves not only run very directed across the crystal surface but are also no longer mirror-symmetric. Thanks to the ‘hypberbolic’ dependence of their wave vector on the propagation direction, we can squeeze these waves into tiny volumes. Thanks to the so-called ‘hyperbolic’ dependence of their wave vector on the propagation direction, we can suqeeze these waves into tiny volumes. These so-called ‘hyperbolic shear polaritons’ emerge from the coupling of infrared light to lattice vibrations called ‘phonons’ in these crystals. In contrast to previous observations of hyperbolic phonon-polaritons using crystals with a symmetric structure, the team discovered new properties of the shear polaritons: their propagation direction depends on the infrared wavelength and their wave fronts are tilted. Optical shear phenomena are found responsible for these new features, which exclusively arise because of the lower crystal symmetry and the associated alignment of the lattice vibrations. Therefore, the crystal symmetry is the fundamental reason for these discoveries.
    “We expect that our results will open new avenues for polariton physics in materials with low symmetry which include many geological minerals and organic crystals”, says FHI scientist Paarmann. This will provide a much greater choice of materials for technological development, which will substantially enhance design options for compact photonic components. This means a big step forward for miniaturization of optical circuitry in future nanophotonic technology.


    Wissenschaftliche Ansprechpartner:

    Dr. Alexander Paarmann, +49 30 8413-5121, E-Mail alexander.paarmann@fhi.mpg.de


    Originalpublikation:

    https://www.nature.com/articles/s41586-021-04328-y


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Physik / Astronomie
    überregional
    Forschungsergebnisse
    Englisch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).