idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
09.03.2022 16:02

A remote control for functional materials

Dr. Joerg Harms Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Struktur und Dynamik der Materie

    Intense mid-infrared excitation has been demonstrated as a powerful tool for controlling the magnetic, ferroelectric and superconducting properties of complex materials. Nonlinear phononics is key to this end, as it displaces specific atoms away from their equilibrium positions to manipulate microscopic interactions. So far, this effect has been thought to occur only within the optically excited volume. Now researchers in Hamburg discovered that the polarization reversal in ferroelectric lithium niobate (LiNbO3) even occurs in areas well away from the direct light ‘hit’. The hitherto unknown phenomenon - called nonlocal nonlinear phononics - has been published in Nature Physics.

    Ferroelectric materials such as LiNbO3 possess a static electric polarization generated by lines of positive and negative charge that can be switched with an electric field. This unique property makes these materials the basic building block of many modern electronic components in smartphones, laptops and ultrasound imaging devices. Using laser light to change the ferroelectric polarization is a new approach that allows for extremely fast processes which would be a key step in the development of highly efficient ultrafast optical switches for new devices.

    The researchers in Andrea Cavalleri’s group at the Max Planck Institute for the Structure and Dynamics (MPSD) used mid-infrared pulses to excite the surface of a LiNbO3 crystal, launching a strong vibration throughout a region that spans a depth of 3 micrometers from the crystal surface. Then, they used a technique called femtosecond stimulated Raman scattering to measure ultrafast changes of the ferroelectric polarization throughout the complete 50 micrometer crystal thickness. The measurements revealed that light pulses with a very high energy density cause the ferroelectric polarization to reverse throughout the entire crystal. By using computational methods to simulate the effects of nonlinear phononics in LiNbO3, the authors found that strong polarization waves called polaritons emerge from the small volume traversed by the light pulse and move throughout the remaining depth of the crystal. These polariton waves are believed to play a significant role in altering the ferroelectric polarization throughout the sections of the crystal that are untouched by the light pulse.

    The results reported by Henstridge et al. add an exciting new piece to the elusive puzzle of ultrafast ferroelectricity, the understanding of which can lead to new device components such as sustainable optical switches. More broadly, this work opens an enormous question concerning whether past and future systems driven by nonlinear phononics can exhibit a similar type of nonlocal character. The ability to manipulate functional properties at a distance could expand the realm of possibilities for incorporating nonlinear phononics into integrated devices and other complex materials, opening new avenues for controlling systems with light.

    This research received support from the Deutsche Forschungsgemeinschaft via the Cluster of Excellence ‘The Hamburg Centre for Ultrafast Imaging’

    Full figure caption:
    An intense mid-infrared laser pulse hits a ferroelectric LiNbO3 crystal and kicks atomic vibrations only in a short depth below the surface, emphasized by the bright tetrahedra. Through anharmonic coupling, this strong vibration launches a polarization wave, also called polariton, which propagates throughout the remaining depth of the crystal to modulate the ferroelectric polarization.


    Wissenschaftliche Ansprechpartner:

    Dr. Michael Först
    Senior Scientist
    Max-Planck-Institut für Struktur und Dynamik der Materie
    Luruper Chaussee 149, Geb. 99 (CFEL)
    22761 Hamburg
    Germany
    michael.foerst@mpsd.mpg.de

    Dr. Meredith A. Henstridge
    (former MPSD Posdoc)
    Research Assoc-Experimental
    SLAC National Accelerator Laboratory
    2575 Sand Hill Rd
    Mailstop 00020
    Menlo Park, California 94025 (USA)
    mhenst@stanford.edu


    Originalpublikation:

    M. Henstridge, M. Först, E. Rowe, M. Fechner, und A. Cavalleri, Nonlocal nonlinear phononics, Nature Physics(2022).
    https://dx.doi.org/10.1038/s41567-022-01512-3


    Weitere Informationen:

    https://doi.org/10.1038/s41567-022-01512-3 News & Views: “Controlling ferroelectricity below the surface” von E. Abreu


    Bilder

    An intense mid-infrared laser pulse hits a ferroelectric LiNbO3 crystal and kicks atomic vibrations only in a short depth below the surface.
    An intense mid-infrared laser pulse hits a ferroelectric LiNbO3 crystal and kicks atomic vibrations ...

    Joerg M. Harms / MPSD


    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wissenschaftler
    Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    An intense mid-infrared laser pulse hits a ferroelectric LiNbO3 crystal and kicks atomic vibrations only in a short depth below the surface.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).