idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project

idw-News App:


Google Play Store

28.03.2022 17:10

Uncovering the HIV life cycle

Susanne Thiele Presse und Kommunikation
Helmholtz-Zentrum für Infektionsforschung

    HIRI scientists search for new antiviral therapies

    Though it has been eclipsed lately by SARS-CoV-2, there is another global epidemic still threatening people: HIV/AIDS. According to UNAIDS, a United Nations initiative, some 38 million people worldwide are currently infected with HIV. Almost as many have died as a result of AIDS since the outbreak of the HIV pandemic in the 1980s. In the search for new approaches to antiviral therapies, scientists at the Helmholtz Institute for RNA-based Infection Research (HIRI) in Würzburg and the Robert Koch Institute (RKI) in Berlin have now developed a new technology that can be used to analyze and impact key stages of the HIV life cycle. Their findings were published today in the journal Nature Structural and Molecular Biology.

    Key stages in the life cycle of a virus can represent attractive targets for drugs and therapies. Therefore, basic research is important to understand and impact the underlying molecular processes. A distinguishing feature of the HIV-1 variant is that it contains two copies of its viral genome. During viral replication two genomes are brought together in a process known as dimerization. The latter is also assumed to be a prerequisite for packaging which will finally lead to new infectious viral particles and complete virus replication.

    A molecular switch

    In the journal Nature Structural and Molecular Biology, researchers at the Helmholtz Institute for RNA-based Infection Research (HIRI) in Würzburg – an institution of the Helmholtz Centre for Infection Research (HZI) in Braunschweig in cooperation with the Julius-Maximilians-Universität (JMU) of Würzburg – and the Robert Koch Institute (RKI) in Berlin now describe a novel technology to investigate the HIV-1 life cycle at single nucleotide resolution. Baptized FARS-seq (Functional Analysis of RNA Structure), their method helps to identify regions within the HIV-1 genome important for dimerization and virus packaging.

    "The idea that dimerization is a prerequisite for packaging has long been discussed in HIV-1 research. However, the underlying molecular mechanisms remained unclear. Our study provides this information in high resolution, allowing targeted intervention," explains junior professor Redmond Smyth, initiator of the study and research group leader at HIRI.

    Liqing Ye conducts research at HIRI in Smyth's lab and is first author of the current study. She adds, "We were able to show that the genome of HIV-1 exists in two different RNA conformations. Only one of them is involved in genome packaging. In the second conformation, the RNA remains in the host cell to be translated into new viral proteins. These two conformations therefore act like a molecular switch to direct the fate of the viral RNA, and thus viral replication."

    The scientists identified sequences that regulate the equilibrium between these two RNA conformations. Their study illustrates how the binding of viral factors to these regions may be used to target or disrupt viral assembly.

    "We hope to be able to leverage these findings into RNA-based antiretroviral drugs or improved gene therapy vectors," says Redmond Smyth of the Helmholtz Institute in Würzburg. In follow-up studies, he says, the researchers now want to determine whether the observations also apply to other strains of the HI virus.

    About HIV
    The human immunodeficiency virus (HIV) belongs to the large family of retroviruses. These viruses are protein-coated, and their genome is made of ribonucleic acid (RNA). A characteristic feature of retroviruses, such as HIV, is that each viral particle consists of two copies of the RNA genome. HIV-1 and HIV-2 are the two variants of the virus known to infect humans. The present study addresses HIV-1, which represents more than 90 percent of all infections.

    This press release is also available on our homepage:

    Helmholtz Centre for Infection Research:
    Scientists at the Helmholtz Centre for Infection Research (HZI) in Braunschweig and its other sites in Germany are engaged in the study of bacterial and viral infections and the body’s defence mechanisms. They have a profound expertise in natural compound research and its exploitation as a valuable source for novel anti-infectives. As member of the Helmholtz Association and the German Center for Infection Research (DZIF) the HZI performs translational research laying the ground for the development of new treatments and vaccines against infectious diseases.

    The Helmholtz Institute for RNA-based Infection Research:
    The Helmholtz Institute for RNA-based Infection Research (HIRI) was founded in May 2017. It is a joint institution of the Helmholtz Centre for Infection Research (HZI) in Braunschweig and the Julius-Maximilians-Universität Würzburg (JMU). Based on the University hospital campus, the HIRI is the first federal institute to focus on the role of ribonucleic acids (RNAs) in infection processes. Its mission is to combine basic research with the development of new RNA-centric therapeutic approaches to treat infections.

    Dr. Britta Grigull
    Presse & Public Relations
    +49 (0)931-31-81801


    Short and long-range interactions in the HIV-1 5’UTR regulate genome dimerization and packaging. Ye L, Gribling-Burrer AS, Bohn P, Kibe A, Börtlein C, Ambi UB, Ahmad S, Olguín-Nava M, Smith M, Caliskan N, von Kleist M, Smyth RP (2022). Nature Structural and Molecular Biology. DOI: 10.1038/s41594-022-00746-2


    Jun Prof Redmond Smyth, corresponding author, and Liqing Ye, first author (front/center) with HIRI team from the HIV study
    Jun Prof Redmond Smyth, corresponding author, and Liqing Ye, first author (front/center) with HIRI t ...
    Britta Grigull
    HIRI / Britta Grigull

    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie, Chemie, Medizin


    Jun Prof Redmond Smyth, corresponding author, and Liqing Ye, first author (front/center) with HIRI team from the HIV study

    Zum Download



    Die Suche / Erweiterte Suche im idw-Archiv

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.


    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).


    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.


    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).