Magnetische Bits zur Datenspeicherung lassen sich – anstatt wie üblich mit Magnetfeldern aus Schreibköpfen – auch durch ultraschnelle Laserpulse umschalten. Forschende des Max-Born-Instituts und der Freien Universität Berlin haben nun einen Weg gefunden, die zum Hin- und Herschalten eines Bits grundsätzlich erforderliche Zeit auf einen Rekordwert von nur sieben Pikosekunden zu verkürzen.
Nach einer Schätzung von IBM übersteigt die derzeitige Tagesproduktion digitaler Informationsbytes 2,5 Quintillionen (entspricht etwa 50 Millionen zweischichtigen Blu-ray-Discs, die übereinander gestapelt 60 km hoch wären) und wächst weiterhin in atemberaubendem Tempo. Die überwiegende Mehrheit dieser Daten wird magnetisch gespeichert, wobei ein binäres Bit, 0 oder 1, einer entgegengesetzten Magnetisierungsrichtung entspricht, und heutzutage üblicherweise durch einen Elektromagneten geschrieben oder gelöscht wird. Da dieses Verfahren in Bezug auf Geschwindigkeit und Energieeffizienz grundlegende Beschränkungen aufweist, wird die Entdeckung des rein optischen Schaltens (all optical switching, AOS), das es ermöglicht ein magnetisches Bit nur mit Hilfe von Lichtpulsen zu schreiben oder zu löschen, als vielversprechender neuer Ansatz für die künftige Datenspeichertechnologie betrachtet. AOS wurde bereits in verschiedenen magnetischen Materialien bestehend aus einem Element der Seltenen Erden und einem Übergangsmetall, z. B. in ferrimagnetischen Gadolinium-Eisen-Legierungen beobachtet. Hier führt die optische Anregung mit Femtosekunden-Laserpulsen zu einer sehr schnellen Erwärmung der Elektronen zu Werten deutlich oberhalb der Curie-Temperatur und somit zu einem entsprechenden Verlust der Magnetisierung in dem magnetischen Material. Der Austausch von Spindrehimpuls zwischen den beiden unterschiedlichen Elementen kann dann eine Umkehrung der Magnetisierung bewirken. Entscheidend ist, dass die Temperatur des Atomgitters nur mäßig erhöht wird, so dass AOS von Natur aus energieeffizient ist. Während dieser Prozess sowohl theoretisch als auch experimentell ausgiebig untersucht worden ist, ist nur wenig über die maximalen Frequenzen von Schreib-/Löschzyklen mit aufeinanderfolgenden Laserpulsen bekannt, obwohl dies entscheidend für den Erfolg von AOS in zukünftigen Datenspeichern ist.
Wissenschaftlerinnen und Wissenschaftler des Max-Born-Instituts und der Freien Universität Berlin konnten zwei Strategien umsetzen, um den zeitlichen Abstand zwischen zwei aufeinanderfolgenden Femtosekunden-Laserpulsen zu reduzieren, die die Magnetisierungsrichtung solcher magnetischen Legierungen immer noch erfolgreich hin- und herschalten können. Erstens konnte durch systematische Änderung der Wärmeübertragungsraten durch Verwendung von Substraten aus amorphem Glas, kristallinem Silizium oder polykristallinem Diamant gezeigt werden, dass effiziente Kühlraten des magnetischen Systems eine Voraussetzung für die Beschleunigung der Sequenz des Doppelpuls-Umschaltens sind. Einen deutlich größeren Einfluss auf die Remagnetisierungsrate und damit auf die Frequenz der Schreib/Löschzyklen zeigte sich jedoch erst als das Übergangsmetall Eisen durch Kobalt ersetzt wurde. Der Vergleich der ultraschnellen Magnetisierungsdynamik einer GdFe- und GdCo-Legierung nach Einzelpulsanregung ist in Abb. 1a) dargestellt. Während die anfängliche Entmagnetisierung sehr ähnlich ist, ist die Relaxationsrate zu einem umgekehrten magnetischen Zustand deutlich unterschiedlich. Während GdCo seine Magnetisierung innerhalb von 5 ps auf 60% umkehrt, wird der gleiche Wert in GdFe erst nach etwa 200 ps erreicht. Die Forschenden erklären diese Beobachtung mit der stärkeren Austauschwechselwirkung zwischen benachbarten Kobalt Atomen (Co-Co) im Vergleich zu benachbarten Eisen Atomen (Fe-Fe), die zu einer schnelleren magnetischen Ordnung des Übergangsmetall-Untergitters führt. Die entsprechenden Ergebnisse der Doppelpulsexperimente für GdCo sind in Abb. 1b und c dargestellt: Die magneto-optischen Bilder zeigen eine entgegengesetzte Magnetisierungsrichtung des Endzustands bei einem Puls-zu-Puls-Abstand von nur Δt12=7 ps. In b) reicht die Fluenz des zweiten Pulses, F2, nicht aus, um die vom ersten Puls gesetzte Magnetisierung zu beeinflussen. In c) wurde die Energie des zweiten Pulses, F2, erhöht, sodass die Magnetisierung erfolgreich wieder zurückgeschaltet werden konnte.
Nach dem besten Wissen des Teams ist dies die bisher schnellste beobachtete Sequenz einer Magnetisierungsumschaltung: nahezu Terahertz-Wiederholraten werden für Schreib-/Löschzyklen von magnetischen Bits erreicht.
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie im Forschungsverbund Berlin e.V.
Dr. Clemens von Korff Schmising
E-Mail: clemens.korffschmising@mbi-berlin.de
Tel.: +4930 6392 1372
Accelerating double pulse all-optical write/erase cycles in metallic ferrimagnets
Applied Physics Letters 120 (2022) 112406/1-7
https://doi.org/10.1063/5.0080351
https://aip.scitation.org/doi/10.1063/5.0080351
https://mbi-berlin.de/de/forschung/highlights/details/accelerating-write-erase-c...
F. Steinbach, N. Stetzuhn, D. Engel, U. Atxitia, C. von Korff Schmising, S. Eisebitt
Ultraschnelle Schaltdynamik einer GdFe- und GdCo-Legierung
Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler
Physik / Astronomie
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).