idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
05.04.2022 17:15

Die dunkle Materie des Gehirns

Dr. Stefanie Merker Kommunikation (PR)
Max-Planck-Institut für biologische Intelligenz (in Gründung)

    Sie finden sich im Gehirn fast jeder Tierart, doch selbst unter dem Elektronenmikroskop bleiben sie meist unsichtbar. „Elektrische Synapsen sind wie die dunkle Materie des Gehirns“, sagt Alexander Borst, Direktor am MPI für biologische Intelligenz, in Gründung (i.G). Nun hat ein Team seiner Abteilung diese wenig erforschte Komponente genauer untersucht: Im Gehirn der Fruchtfliege Drosophila konnten sie zeigen, dass elektrische Synapsen in fast allen Bereichen des Gehirns vorkommen und einzelne Nervenzellen in ihrer Funktion und Stabilität beeinflussen.

    Nervenzellen kommunizieren über Synapsen: kleine Kontaktpunkte, an denen über chemische Botenstoffe ein Signal von einer Zelle zur nächsten weitergegeben wird. Das wissen wir vielleicht noch aus dem Biologieunterricht. Doch das ist nicht die ganze Geschichte. Neben den allgemein bekannten chemischen Synapsen gibt es noch einen zweiten, kaum bekannten Synapsentyp: die elektrische Synapse.

    „Elektrische Synapsen sind deutlich seltener und mit den gängigen Methoden schwer zu erkennen. Daher sind sie bisher wenig erforscht“, erklärt Georg Ammer, den diese verborgenen Zellverbindungen schon lange faszinieren. „In den meisten Gehirnen wissen wir daher selbst grundlegende Dinge nicht, wie zum Beispiel wo genau elektrische Synapsen vorkommen oder wie sie die Gehirnaktivität beeinflussen.“

    Eine elektrische Synapse verbindet zwei Nervenzellen direkt miteinander, sodass das elektrische Signal ohne Umweg von einer Zelle zur nächsten fließen kann. Außer bei Stachelhäutern kommt diese besondere Synapsenart im Gehirn jeder darauf untersuchten Tierart vor. „Elektrische Synapsen müssen daher wichtige Funktionen haben: wir wissen nur nicht welche!“, so Georg Ammer.

    Um diesen Funktionen auf die Spur zu kommen, haben Ammer und seine beiden Kolleginnen, Renée Vieira und Sandra Fendl, einen wichtigen Protein-Baustein elektrischer Synapsen markiert. So konnten sie im Gehirn von Fruchtfliegen zeigen, dass elektrische Synapsen nicht in allen Nervenzellen vorkommen, dafür aber in fast allen Bereichen des Gehirns.

    Durch das gezielte Ausschalten elektrischer Synapsen im Areal der visuellen Verarbeitung konnten die Wissenschaftler*innen zeigen, dass die betroffenen Nervenzellen auf bestimmte Reize stark abgeschwächt reagieren. Auch wurden einzelne Nervenzelltypen ohne elektrische Synapsen instabil und fingen an, spontan zu oszillieren.

    „Die Ergebnisse lassen vermuten, dass elektrische Synapsen für sehr viele verschiedene Hirnfunktionen wichtig sind und je nach Nervenzelltyp ganz unterschiedliche Aufgaben haben können“, so Ammer. „Diese Synapsen sollten daher möglichst auch bei Konnektom-Untersuchungen berücksichtigt werden.“ Als "Konnektom" wird der vollständige Schaltplan aller Nervenzellen und ihrer Verbindungen im Gehirn oder einem Hirnbereich bezeichnet. Häufig werden diese Informationen aus Aufnahmen aus dem Elektronenmikroskop rekonstruiert – wo elektrische Synapsen meist unsichtbar sind. Wie sich diese gemeinsam mit den chemischen Synapsen in vollständigen Schaltplänen integrieren lassen und welche Geheimnisse elektrische Synapsen vielleicht sonst noch verbergen, müssen weitere Studien zeigen.

    KONTAKT
    Dr. Stefanie Merker
    Kommunikation
    Max-Planck-Institut für biologische Intelligenz, in Gründung
    E-Mail: communications@bi.mpg.de


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Alexander Borst
    Direktor
    Max-Planck-Institut für biologische Intelligenz, in Gründung
    E-Mail: thalhammer@neuro.mpg.de


    Originalpublikation:

    Anatomical distribution and functional roles of electrical synapses in Drosophila
    Georg Ammer, Renée Vieira, Sandra Fendl and Alexander Borst
    Current Biology, online 5. April 2022


    Weitere Informationen:

    http://www.bi.mpg.de/borst/de - Webseite der Abteilung


    Bilder

    Elektrische Synapsen verbinden Nervenzellen in fast jedem Gehirn, doch sie sind kaum erforscht. Eine Studie zeigt nun erstmals, wo diese speziellen Synapsen im Fruchtfliegen-Gehirn vorkommen und die Gehirnaktivität beeinflussen.
    Elektrische Synapsen verbinden Nervenzellen in fast jedem Gehirn, doch sie sind kaum erforscht. Eine ...

    (c) MPI für biologische Intelligenz, i.G. / Julia Kuhl


    Merkmale dieser Pressemitteilung:
    Journalisten, Lehrer/Schüler, Studierende, Wissenschaftler, jedermann
    Biologie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Elektrische Synapsen verbinden Nervenzellen in fast jedem Gehirn, doch sie sind kaum erforscht. Eine Studie zeigt nun erstmals, wo diese speziellen Synapsen im Fruchtfliegen-Gehirn vorkommen und die Gehirnaktivität beeinflussen.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).