idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
25.04.2022 17:24

Ein Lichtverstärker für effiziente Glasfasernetzwerke

Hans-Christoph Keller Kommunikation, Marketing und Veranstaltungsmanagement
Humboldt-Universität zu Berlin

    Forscher der Humboldt-Universität zu Berlin haben einen Nano-Repeater entwickelt, der Licht nur in eine Richtung verstärkt

    Glasfasern sind heute das Rückgrat unserer Informationsgesellschaft. Um in Glasfasernetzen Daten mittels Lichts über große Strecken zu übertragen, muss das Licht jedoch in regelmäßigen Abständen nachverstärkt werden, um die auftretenden Verluste zu kompensieren. Hierfür kommen sogenannte Repeater zum Einsatz. Eine wichtige Repeater-Bauart beruht dabei auf der Verstärkung von Licht mittels des Lasereffekts. Hierfür werden Atome innerhalb der Glasfaser in einen angeregten Zustand versetzt und dann von dem zu verstärkenden Licht stimuliert, ihre gespeicherte Energie in Form von zusätzlichen Lichtteilchen abzugeben. So kommt aus dem Laserverstärker mehr Licht heraus als hineingeht.

    Unter gewöhnlichen Umständen würde ein Laserverstärker vorwärts und rückwärts laufendes Licht gleichermaßen verstärken, da Atome runde Teilchen sind und daher in alle Richtungen gleichermaßen zusätzliche Lichtteilchen abgeben würden. In Glasfasernetzwerken kann dies zum Problem werden, wenn zum Beispiel in der Rückwärtsrichtung laufende Störsignale verstärkt werden.

    Forscher um den Quantenphysiker Arno Rauschenbeutel an der Humboldt-Universität zu Berlin haben nun einen neuartigen Weg aufgezeigt, um Atome dazu zu bewegen, das Licht in einer Glasfaser nur in eine Richtung zu verstärken. Hierfür zwängten sie das in der Glasfaser geführte Licht durch eine Verjüngung, in der die Glasfaser hundertmal dünner ist als ein menschliches Haar. Das Licht in solch einer ultradünnen Glasfaser ragt dann ein winziges Stück über deren Oberfläche hinaus – man spricht hier von einem evaneszenten Lichtfeld. „Durch die Wechselwirkung zwischen der Lichtwelle und der ultradünnen Glasfaser wird der Schwingungszustand des Lichtfelds verändert. Das evaneszente Feld dreht sich dann wie der Rotor eines Helikopters“, erklärt Arno Rauschenbeutel. Die Drehrichtung hängt dabei davon ab, ob das Licht in der Glasfaser vorwärts oder rückwärts läuft. Einmal schwingt das Licht im Uhrzeigersinn, einmal dagegen. Ausbreitungsrichtung und Schwingungszustand des Lichts sind also fest miteinander verknüpft.

    Wenn man nun Atome mit Laserlicht in Rotation versetzt und an das evaneszente Feld der ultradünnen Glasfaser koppelt, kann man erreichen, dass sie sich bezüglich der beiden Licht-Rotationsrichtungen unterschiedlich verhalten. „Das Lichtfeld in der Vorwärtsrichtung hat den gleichen Drehsinn wie die Atome und wird von diesen verstärkt. Das Lichtfeld in der Rückwärtsrichtung, das sich andersherum dreht als die Atome, wird von diesen hingegen nicht beeinflusst“, sagt Philipp Schneeweiß, der gemeinsam mit Arno Rauschenbeutel an den Lichtverstärkern forscht. Diesen Effekt demonstrierten die Forscher in einem Experiment: Sie kühlten einige hundert Atome auf eine Temperatur von wenigen Millionstel Grad über dem absoluten Nullpunkt ab, sodass diese fast stillstanden und sich entlang der ultradünnen Glasfaser aufreihen ließen. Obwohl nur etwa so viele Atome zum Einsatz kamen wie sich insgesamt in einem einzelnen Insulinmolekül befinden, verstärkten diese das Licht in der einen Richtung um den Faktor zwei. In der Gegenrichtung änderte sich die Stärke des Lichts dagegen nicht.

    Die Forscher sind optimistisch, dass das demonstrierte Prinzip schon bald praktische Anwendungen finden wird. Außer in Glasfasernetzwerken könnte es auch in supraleitenden Quantenschaltkreisen verwendet werden, die in bestimmten Quantencomputern zum Einsatz kommen. „Dort wäre es insbesondere von Vorteil, dass unser Ansatz im Gegensatz zu anderen ohne Magnetfelder auskommt, denn die lassen sich nicht gut mit Supraleitern kombinieren“ erläutert Arno Rauschenbeutel.


    Wissenschaftliche Ansprechpartner:

    Arno Rauschenbeutel
    Institut für Physik
    Humboldt-Universität zu Berlin
    E-Mail: arno.rauschenbeutel@hu-berlin.de
    Telefon: +49 30 2093 82152


    Originalpublikation:

    Atomic spin-controlled non-reciprocal Raman amplification of fibre-guided light
    Sebastian Pucher, Christian Liedl, Shuwei Jin, Arno Rauschenbeutel, Philipp Schneeweiss
    Nature Photonics (2022)
    https://www.nature.com/articles/s41566-022-00987-z
    DOI: 10.1038/s41566-022-00987-z


    Bilder

    Anhang
    attachment icon PM HU Lichtverstärker

    Merkmale dieser Pressemitteilung:
    Journalisten
    Physik / Astronomie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).