idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
19.05.2022 17:32

Wärmedämmung für Quantentechnologien

Dr. Antonia Rötger Kommunikation
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

    Neue energieeffiziente IT-Bauelemente arbeiten häufig nur bei extrem tiefen Temperaturen stabil. Daher kommt es entscheidend auf eine sehr gute Wärmeisolierung solcher Elemente an. Ein Team am HZB hat nun nanoporöse Silizium-Aluminium-Proben hergestellt, in welchen Poren und Nanokristallite die Wärmeleitfähigkeit drastisch reduzieren. Die Gruppe hat zudem ein Modell für die Vorhersage der Wärmeleitfähigkeit entwickelt, das anhand von Messdaten zur Mikrostruktur der Proben und deren Wärmeleitfähigkeit bestätigt wurde. Damit liegt erstmals eine Methode für die gezielte Entwicklung von komplexen porösen Materialien mit ultraniedriger Wärmeleitfähigkeit vor.

    Wärmedämmung ist nicht nur für Gebäude wichtig, sondern auch in den Quantentechnologien. Während die Dämmplatten um ein Haus die Heizwärme im Haus halten, geht es bei Quantenbauelementen um eine Isolierung gegen die Wärme aus der Außenwelt, da viele Quanteneffekte nur bei tiefer Temperatur stabil sind. Gesucht werden also Materialien mit extrem geringer Wärmeleitfähigkeit, die außerdem kompatibel mit den in der Quantentechnologie genutzten Materialien sind.

    Auf diesem Weg ist nun ein Team um Dr. Klaus Habicht aus dem HZB einen großen Schritt vorangekommen. Mit einem neuartigen Sinterverfahren stellten sie Proben aus Silizium und Silizium-Aluminium her, die unter Druck und einem elektrischen Feld für wenige Minuten unter hoher Temperatur verpresst wurden. Davor wurden dem Si-Ausgangsmaterial mittels elektrochemischen Ätzverfahren weitere Mikrostrukturen hinzugefügt, die den Wärmetransport noch weiter unterdrücken. „Silizium ist aus vielen Gründen hier das ideale Material, insbesondere passt es zu möglichen Bauelementen, die auf Silizium Qubits beruhen“, betont Habicht.

    So erhielten sie eine Reihe von Materialproben mit winzigen Poren, kristallinen Nanopartikeln und so genannten Domänengrenzen. Wärmeleitung funktioniert über Schwingungen im Kristallgitter. In der Physik spricht man von Phononen. Diese Phononen können sich jedoch nur ausbreiten, wenn sie nicht auf Hindernisse stoßen, an denen sie gestreut werden. Sowohl Poren als auch Nanopartikel und Domänengrenzen können bei passenden Abständen und Durchmessern zu solchen Streuzentren werden und damit die Wärmeleitung reduzieren.

    Mit einem eleganten Modell berechneten die Forschenden das Verhalten der Phononen und damit die Wärmeleitfähigkeit in unterschiedlichen Proben. Deren Mikrostruktur floss mit Parametern wie Größe und Abstand von Poren und Nanopartikeln ein. „Bei diesem Modell können wir die Beiträge von Nanopartikeln und Poren zur Wärmeleitfähigkeit deutlich voneinander trennen“, erklärt Habicht.

    Die experimentellen Ergebnisse zu Mikrostrukturen und Wärmeleitfähigkeit in den einzelnen Proben bestätigen das neue Modell. Die Mikrostrukturen bestimmte Erstautor Danny Kojda am Rasterelektronenmikroskop des HZB. Mit einer speziellen dafür von ihm weiterentwickelten Bildauswertungssoftware ermittelte er Größe und Anzahl von Nanopartikeln und Poren, sowie deren Abstand. Die Wärmeleitfähigkeit in Abhängigkeit von der Temperatur wurde in allen Proben sorgfältig gemessen. Die Messdaten passten extrem gut zu den modellierten Ergebnissen. Damit lässt sich nunmehr bestimmen, ob in einer Probe mit gegebener Mikrostruktur vor allem die Poren oder doch mehr die Nanokristallite ursächlich für die Unterdrückung der Wärmeleitung sind.

    „Das Verständnis der grundlegenden Transportprozesse hilft uns dabei, maßgeschneiderte Materialien mit stark reduzierter Wärmeleitfähigkeit zielgerichtet herzustellen und weiter zu entwickeln“, sagt Kojda.


    Wissenschaftliche Ansprechpartner:

    Dr. Klaus Habicht, HZB
    habicht@helmholtz-berlin.de


    Originalpublikation:

    Nano Research 2022:

    Characterization and modeling of the temperature-dependent thermal conductivity in sintered porous silicon-aluminum nanomaterials

    Danny Kojda, Tommy Hofmann, Natalia Gostkowska-Lekner, and Klaus Habicht
    DOI: 10.1007/s12274-022-4123-y


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wirtschaftsvertreter, Wissenschaftler
    Physik / Astronomie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).