idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
16.06.2022 14:34

Preprogrammed aging: gene-controlled growth in youth drives aging of blood stem cells in late life

Dr. Kerstin Wagner Kommunikation
Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

    Throughout one’s life, the blood is constantly being replenished from blood stem cells. However, these cells lose their functionality in old age. Researchers at the Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) have now found a gene mechanism that is responsible for the aging of hematopoietic stem cells. The gene Igf2bp2 is important in youth for the full function of these cells, as it activates their growth and metabolism. When the gene is missing, however, the aging-associated loss of function of the stem cells is surprisingly diminished. The eventual aging of hematopoietic stem cells is apparently already preprogrammed by their gene-driven growth in youth.

    Jena/Los Angeles. At what point do we start to age? Scientists have been speculating about this for some time. Does aging already begin early in life, or does the process start even in the embryo? Initial studies on worms have shown that the absence of certain growth genes slows down their development but can also delay their aging. Whether this connection also exists in mammals was previously unclear and was therefore investigated in more detail in the current study, on mouse hematopoietic stem cells, which has now been published in the journal "Blood".

    Growth factor Igf2bp2 controls the function of blood stem cells in early life

    Researchers at the Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) in Jena have been able to demonstrate that in mice, the growth factor Igf2bp2 controls hematopoietic stem cell function in young adulthood by activating stem cell metabolism and growth. “After that, the gene is silenced and loses its function, it shows hardly any activity in the stem cells in advanced age,” explains Prof. K. Lenhard Rudolph, research group leader at the FLI and professor of molecular medicine at FSU Jena. “Surprisingly, mice in which the gene is mutated show a reduction in the age-associated loss of function of the blood stem cells in late life, even though the gene is no longer active. This suggests that Igf2bp2 gene function in early life leads to the aging of the stem cells.”

    The hematopoietic stem cells in the bone marrow continuously ensure that the blood system is supplied with new cells throughout life and that in stressful conditions, such as infections, inflammations or bleeding, the production of the required blood cells can then be initiated immediately. Blood formation, also called hematopoiesis, is regulated by a complex system of stem cells. The activity of the metabolism and of growth signals contributes decisively to the development of stem cell function. However, as the organism ages, increased metabolic activity can also lead to functional exhaustion of hematopoietic stem cells. Whether the metabolic and dividing activity of hematopoietic stem cells during embryonic development or in adolescence already predetermines later aging of the cells had not been previously been reported and was therefore the subject of the current study.

    Aging of blood stem cells may be preprogrammed in the cell’s developmental memory

    The experimental findings of the current study suggest that the activation of growth and metabolism in juvenile mice preprograms the subsequent loss of function of hematopoietic stem cells and inscribes this into the cell’s memory. The Igf2bp2-gene drives growth and metabolic activity at a young age but these activities contribute to the age-associated loss of hematopoietic stem cell function in later life.

    “The study results show that a certain growth and metabolic activity is necessary for the undisturbed development of our blood stem cells. However, these two processes simultaneously burn themselves into our cells as a kind of memory and then contribute to the loss of function of the blood stem cells later in life,” postulates Prof. Rudolph. “The mechanistic principles behind this cell memory are still largely unknown. But if we were able to understand it sufficiently well, new therapies could be developed to improve health in old age.”

    New subgroup of blood stem cells

    The present study was carried out in cooperation with systems biologist Prof. Adam L. MacLean and his collaborator, Megan Rommelfanger, from the University of Southern California, Los Angeles, USA. The research group specializes in the study of genes at the single-cell level. Using this expertise, the scientists were able to identify a new subset of hematopoietic stem cells that exhibit particularly strong activity of Igf2bp2-dependent metabolism and growth in adolescent mice.

    “The activity phase of the Igf2bp2 gene at a young age could trigger a kind of memory in the blood stem cells,” the researchers speculate, “which then contributes to blood system dysfunction later at an advanced age,” Dr. Miaomiao Suo, the study’s first author, thinks that chemical changes in genetic information, or epigenetic factors, could be significant here. “We age because we grow. We can’t get around that. But it may become possible in the future to erase the cellular memory of metabolic and growth activity, thereby improving the aging process,” Prof. Rudolph concludes.

    Publication

    Age-dependent effects of Igf2bp2 on gene regulation, function, and aging of hematopoietic stem cells in mice. Miaomiao Suo, Megan K. Rommelfanger, Yulin Chen, Elias Moris Amro, Bing Han, Zhiyang Chen, Karol Szafranski, Sundaram Reddy Chakkarappan, Bernhard O. Boehm, Adam L. MacLean, K. Lenhard Rudolph. Blood 2022, 139(17): 2653–65. https://doi.org/10.1182/blood.2021012197

    Contact

    Dr. Kerstin Wagner
    Press and Public Relations
    Phone: 03641-656378, email: presse@leibniz-fli.de

    -------------------------

    Background Information

    The Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) – upon its inauguration in 2004 – was the first German research organization dedicated to research on the process of aging. More than 350 employees from around 40 nations explore the molecular mechanisms underlying aging processes and age-associated diseases. For more information, please visit http://www.leibniz-fli.de.

    The Leibniz Association connects 97 independent research institutions that range in focus from natural, engineering and environmental sciences to economics, spatial and social sciences and the humanities. Leibniz Institutes address issues of social, economic and ecological relevance. They conduct basic and applied research, including in the interdisciplinary Leibniz Research Alliances, maintain scientific infrastructure, and provide research-based services. The Leibniz Association identifies focus areas for knowledge transfer, particularly with the Leibniz research museums. It advises and informs policymakers, science, industry and the general public. Leibniz institutions collaborate intensively with universities – including in the form of Leibniz ScienceCampi – as well as with industry and other partners at home and abroad. They are subject to a transparent, independent evaluation procedure. Because of their importance for the country as a whole, the Leibniz Association Institutes are funded jointly by Germany’s central and regional governments. The Leibniz Institutes employ around 20,500 people, including 11,500 researchers. The financial volume amounts to 2 billion euros. For more information: http://www.leibniz-gemeinschaft.de/en/.


    Wissenschaftliche Ansprechpartner:

    Age-dependent effects of Igf2bp2 on gene regulation, function, and aging of hematopoietic stem cells in mice. Miaomiao Suo, Megan K. Rommelfanger, Yulin Chen, Elias Moris Amro, Bing Han, Zhiyang Chen, Karol Szafranski, Sundaram Reddy Chakkarappan, Bernhard O. Boehm, Adam L. MacLean, K. Lenhard Rudolph. Blood 2022, 139(17): 2653–65. https://doi.org/10.1182/blood.2021012197


    Bilder

    The growth factor Igf2bp2 controls the growth and metabolic activity of blood stem cells at a young age and contributes to the age-associated loss of stem cell function later in life.
    The growth factor Igf2bp2 controls the growth and metabolic activity of blood stem cells at a young ...
    Photo: Gerd Altmann / Pixabay


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler, jedermann
    Biologie, Chemie, Ernährung / Gesundheit / Pflege, Medizin
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    The growth factor Igf2bp2 controls the growth and metabolic activity of blood stem cells at a young age and contributes to the age-associated loss of stem cell function later in life.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).