Researchers at the Department of Physics and the Cluster of Excellence “CUI: Advanced Imaging of Matter” of Universität Hamburg and the University of California at Irvine have recently proposed a new way to characterize topological superconductors by means of multi-THz-pulse experiments.
This opens the pathway to unambiguously identifying predicted exotic states of matter and could help to design novel materials for future devices which carry and process quantum information.
Scientists around the world hunt for the realization of scalable quantum computers on the basis of solid-state matter. One such class of materials are topological superconductors. They are conjectured to host a particular kind of collective quantum states, the non-abelian anyons in the form of Majorana fermions at their boundaries. By shuffling these quasiparticles around in networks of quantum wires, one can realize logical quantum gates, the building blocks of quantum computers.
Bulk instead of boundary properties in the focus
Early signatures of the existence of Majoranas were reported on the basis of measurements of quantum transport, but later, these studies turned out to be unreliable because Majoranas can easily be confused with trivial boundary excitations. The new theory work takes a different approach. Instead of investigating the Majoranas at the boundaries of the device themselves, the bulk material should be addressed. Due to the so-called 'bulk-boundary correspondence', Majoranas are intimately connected to the topology of the bulk band structure of the superconductor. In some sense, the particle excitations in the bulk material experience a 'twist' with the Majoranas at the boundaries. This strong interlinkage can be addressed by means of two-dimensional THz spectroscopy, a technique widely used in molecules and bulk matter.
“Unlike 'linear' absorption spectroscopy, nonlinear multi-pulse experiments allow us to study the optical response of excited particles and thus help to reveal this 'twisting' clearly, with unique signatures of the exotic topological state in the 2D spectra” says Prof. Dr. Michael Thorwart of Universität Hamburg and scientist in the Cluster of Excellence.
The theory proposal formulates an important step between the detection of the most basic but not fully-characterizing properties of Majoranas and the yet too ambitious demonstration of the logical gate operations with non-abelian anyons in the form of braiding of Majorana states.
“Such optical techniques yield spectroscopic information beyond imaging and allow for an undoubtful characterization of topological materials. As such, they might build a bridge to their faraway applications in quantum technologies”, adds Felix Gerken, lead author and PhD student at the CUI-Graduate School of the Cluster of Excellence.
Prof. Dr. Michael Thorwart
Tel. +49-(0)40-42838-3641
michael.thorwart@physik.uni-hamburg.de
DOI: https://doi.org/10.1103/PhysRevLett.129.017401
https://link.aps.org/doi/10.1103/PhysRevLett.129.017401 - Publication in the PHYSICAL REVIEW LETTERS
Merkmale dieser Pressemitteilung:
Journalisten, Wissenschaftler
Physik / Astronomie
überregional
Forschungsergebnisse, Forschungsprojekte
Englisch

Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).