idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
05.07.2022 10:22

High harmonics illuminate the movement of atoms and electrons

Jenny Witt Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Struktur und Dynamik der Materie

    Laser light can radically change the properties of solid materials, making them superconducting or magnetic within millionths of a billionth of a second. The intense light causes fundamental, immediate changes in a solid by ‘shaking’ its atomic lattice structure and moving electrons about. But what exactly is happening at that elementary level? How do those atoms and electrons actually move?

    Now a theory team at the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg has found a new way to illuminate those atomic motions. Writing in PNAS, the researchers outline how a laser pulse generates light emission at higher frequencies from the material, so-called higher harmonics. This high energy light, however, does not stay the same but it changes with each movement of the lattice. As the high harmonics change in intensity, they provide ‘snapshots’ of the atoms’ and electrons’ movements at each exact moment.

    The team studied a monolayer of hexagonal boron nitride (hBN) just one atom thick, whose lattice can be excited to vibrate on timescales of tens of femtoseconds. A first ‘pump’ laser pulse hits the material, making the atoms move in unison. Subsequently, a second infrared laser pulse excites the electrons yet further, so that they cause the emission of light at new frequencies - the high harmonics. These contain the underlying information about the lattice vibrations (also known as phonons). By analysing them, scientists gain detailed new insights into those atomic motions.

    The team’s findings represent a major step forward in understanding the fundamental changes in a solid material while it is being irradiated by an intense laser. It is also a highly efficient method because until now researchers needed far more advanced light sources to observe those elementary motions.

    In addition, the team showed that, once the atoms begin to vibrate, the interaction between the material and the initial laser pulse changes with the phase of the laser itself. This means that scientists can pinpoint exactly which movement in the lattice was sparked by which phase in the laser’s optical cycle, as if they were setting a stopwatch to that particular moment in time. Put differently: The team’s work has produced a highly advanced spectroscopic technique with extreme temporal resolution. Within this approach, lattice movements can be charted down to a single femtosecond – but without the need for high-energy X-rays or attosecond pulses, which are far more difficult to employ.

    “The main impact of this work is that we are forming a starting point to understand how phonons play a role in nonlinear light matter interactions,” says lead author Ofer Neufeld from the MPSD Theory Department. “This approach lets us probe femtosecond structural dynamics in solids, including phase transitions, dressed phases of matter, and also coupling between electrons and phonons.”


    Wissenschaftliche Ansprechpartner:

    Ofer Neufeld, lead author: ofer.neufeld@mpsd.mpg.de


    Originalpublikation:

    https://www.pnas.org/doi/10.1073/pnas.2204219119


    Weitere Informationen:

    https://www.mpsd.mpg.de/635590/2022-07-harmonics-neufeld


    Bilder

    A terahertz pulse (blue) excites atomic vibrations (phonons) in a monolayer of hBN. A subsequent intense IR laser pulse (red) probes the atomic positions by generating high harmonic radiation (rainbow) with temporal information down to one femtosecond.
    A terahertz pulse (blue) excites atomic vibrations (phonons) in a monolayer of hBN. A subsequent in ...

    Jörg Harms, MPSD


    Merkmale dieser Pressemitteilung:
    Journalisten, Lehrer/Schüler, Studierende, Wissenschaftler, jedermann
    Elektrotechnik, Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    A terahertz pulse (blue) excites atomic vibrations (phonons) in a monolayer of hBN. A subsequent intense IR laser pulse (red) probes the atomic positions by generating high harmonic radiation (rainbow) with temporal information down to one femtosecond.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).