idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
17.08.2022 11:54

Achema 2022: AI meets particle technology to simplify flowability and packing density predictions

Julia Reichelt Universitätskommunikation
Technische Universität Kaiserslautern

    Round particles and their properties are easy to describe mathematically. But the less round or spherical the shape, the harder it becomes to make predictions about their behavior. For example, if a pharmaceutical manufacturer wants to know how a different tablet shape will affect the required packaging size. In his doctoral thesis at the Technical University of Kaiserslautern (TUK), Robert Hesse has trained a neural network to automatically determine the packing density and flowability of non-spherical particles. He will present his idea at Achema from August 22 to 26 at the Rhineland-Palatinate research booth (A35, hall 6).

    Few particles in nature or in industrial production are exactly round; instead, there are a multitude of variants and shape characteristics. This is exactly what makes it so complicated to describe non-spherical particles and optimize their handling based on the description. For example, the rounder a tablet is, the less likely it is to snag on other tablets in the filling process. A flat cylindrical shape can already be optimized by slight rounding when it comes to packing density.

    But how can all the properties that determine flowability and packing density be quickly recorded in order to derive decisions on the choice of a shape? What previously required simplified calculations of individual mathematical parameters or mold components can be derived automatically by a trained artificial intelligence - in this case a so-called "Deep Convolutional Neural Network" - using a 3D model. "Using simulations in which only the shape of the particles varied, I created a comprehensive experimental data set and used it to train the neural network," reports Hesse, a research associate at the Department of Mechanical Process Engineering. "Standardized experiments with 3D-printed particles allowed the simulation methodology to be validated in the test phase - that is, to match how accurately the simulation can represent real particles."

    The trained neural network now filters out salient features such as curves, corners, edges, etc. from any three-dimensional point cloud representing the entire shape. Using this information, it can analyze flowability and random packing density. "This is useful, for example, for optimizing the shape of pharmaceutical products in terms of minimum machine dimensions and package sizes," the researcher says.

    At Achema, Hesse will give interested visitors insight into his research and the neural network's capabilities through a poster presentation.

    Questions can be directed to:
    Robert Hesse, M.Sc.
    Chair of Particle Process Engineering
    Phone: +49 631 205-2416
    E-mail: robert.hesse@mv.uni-kl.de

    Klaus Dosch, Department of Technology and Innovation, is organizing the presentation of the researchers of the TU Kaiserslautern at the Achema. He is the contact partner for companies and, among other things, establishes contacts to science.
    Contact: Klaus Dosch, E-mail: dosch@rti.uni-kl.de, Phone: +49 631 205-3001


    Bilder

    Robert Hesse shows the 3D-printed non-spherical particles he used to validate the simulation models in the project.
    Robert Hesse shows the 3D-printed non-spherical particles he used to validate the simulation models ...
    Thomas Koziel
    TUK, Koziel


    Merkmale dieser Pressemitteilung:
    Journalisten
    Informationstechnik, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse, Forschungsprojekte
    Englisch


     

    Robert Hesse shows the 3D-printed non-spherical particles he used to validate the simulation models in the project.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).