Molekulare Motoren sind komplexe Mikromaschinen, die in biologischen Zellen zahlreiche mechanische Aktionen ausführen. Um die Arbeitsweise dieser Winzlinge zu verstehen, muss man ihre genaue Struktur erkunden. Ein Forschungsteam um Thomas C. Marlovits vom Zentrum für Strukturelle Systembiologie (CSSB) bei DESY hat nun die Architektur, den kompletten Funktionszyklus und den Wirkmechanismus eines solchen molekularen Motors aufgeklärt. Das Team berichtet im Fachblatt „Nature“, wie der sogenannte RuvAB Branch Migration Complex chemische Energie in mechanische Arbeit umwandelt, um die Rekombination und Reparatur des Erbgutstrangs der DNA durchzuführen.
Die DNA-Rekombination ist einer der grundlegenden biologischen Prozesse in lebenden Organismen. Dabei tauschen Chromosomen Erbgut aus, um entweder genetische Vielfalt zu erzeugen, indem neue Nachkommen entstehen, oder um die genetische Integrität zu erhalten, indem Brüche in bestehenden Chromosomen repariert werden.
Bei der DNA-Rekombination trennen sich zwei DNA-Doppelstränge in ihre vier einzelnen Arme und verbinden sich über Kreuz neu. Die Kreuzung, an der das geschieht, heißt Holliday Junction. Die für diesen Prozess nötige Energie stammt von einer molekularen Maschine, die als RuvAB Branch Migration Complex bezeichnet wird. Er verteilt sich um die Holliday Junction herum und besteht aus zwei Motoren mit der Bezeichnung RuvB AAA+ ATPasen, die den Erbgutaustausch vorantreiben, und einem RuvA-Stator. Das Forschungsteam hat nun den komplexen Bauplan vorgelegt, der erklärt, wie die RuvB AAA+ Motoren unter der Kontrolle des RuvA-Proteins arbeiten, um eine synchronisierte DNA-Bewegung durchzuführen.
Die durch den RuvB AAA+ Motor angeregten aktiven Verzweigungsbewegungen sind sehr schnell und hochdynamisch. Um die einzelnen Schritte dieses Prozesses zu bestimmen, beobachteten die Wissenschaftler den Motor mit Hilfe der zeitaufgelösten Kryo-Elektronenmikroskopie in Zeitlupe. „Wir haben dem RuvB AAA+-Motor im Prinzip einfach einen langsamer verbrennenden Treibstoff zur Verfügung gestellt, der es uns ermöglicht, die biochemischen Reaktionen während ihres Ablaufs zu erfassen“, erläutert Marlovits, der Professor am Universitätsklinikum Hamburg-Eppendorf (UKE) und Wissenschaftler bei DESY ist.
Das Team hat mehr als zehn Millionen Bilder von der Interaktion des Motors mit der Holliday Junction aufgenommen. Mit Hilfe von Hochleistungsrechnern bei DESY konnten das Team alle Puzzleteile zusammenfügen und einen hochauflösenden Film erstellen, der zeigt, wie der RuvAB-Komplex funktioniert.
„Wir konnten sieben verschiedene Zustände des Motors sichtbar machen und zeigen, wie die miteinander verbundenen Elemente zyklisch zusammenarbeiten“, berichtet Hauptautor Jiri Wald (UKE und Teilnehmer des Doktorandenprogramms am Vienna BioCenter), der die riesigen Datenmengen durchforstet hat. „Wir haben auch gezeigt, dass der RuvB-Motor Energie in eine Hebelbewegung umwandelt, deren Kraft die Wanderung der Arme antreibt. Es ist faszinierend, dass diese Motoren einen einfachen Hebelmechanismus nutzen, um das DNA-Substrat zu bewegen. Zusammengenommen ähnelt der RuvAB-Motor mit seinem sequenziellen Mechanismus, der Koordination und der Art der Krafterzeugung konzeptionell dem Verbrennungsmotor."
AAA+-Motoren kommen auch in anderen biologischen Systemen wie dem Proteintransport häufig zum Einsatz. Daher kann das neue, detaillierte Modell des RuvB-AAA+-Motors als Blaupause für ähnliche molekulare Motoren dienen. „Wir verstehen, wie der Motor funktioniert und können ihn nun mit einigen kleinen Anpassungen in ein anderes System einbauen“, erklärt Marlovits. „Wir präsentieren im Wesentlichen die Grundprinzipien für AAA+-Motoren.“
Künftig will die Marlovits-Gruppe Wege erforschen, in die Funktion der AAA+-Motoren einzugreifen. Dies könnte einmal die Grundlage für die Entwicklung einer neuen Generation von Medikamenten bilden, die solche Motoren in Krankheitserregern stören und damit die Ausbreitung der Infektion stoppen. „Wir werden mit Spannung die Möglichkeiten erkunden, die sich aus dem Bauplan des RuvB-AAA+-Motors ergeben“, sagt Wald.
An der Arbeit waren das CSSB, das UKE, das Institut für molekulare Biotechnologie in Wien, das Forschungsinstitut für molekulare Pathologie in Wien und DESY beteiligt.
DESY zählt zu den weltweit führenden Teilchenbeschleuniger-Zentren und erforscht die Struktur und Funktion von Materie – vom Wechselspiel kleinster Elementarteilchen, dem Verhalten neuartiger Nanowerkstoffe und lebenswichtiger Biomoleküle bis hin zu den großen Rätseln des Universums. Die Teilchenbeschleuniger und die Nachweisinstrumente, die DESY an seinen Standorten in Hamburg und Zeuthen entwickelt und baut, sind einzigartige Werkzeuge für die Forschung: Sie erzeugen das stärkste Röntgenlicht der Welt, bringen Teilchen auf Rekordenergien und öffnen neue Fenster ins Universum. DESY ist Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands, und wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert.
Prof. Thomas C. Marlovits
UKE und DESY
+49 40 8998-87650
thomas.marlovits@desy.de
Mechanism of AAA+ ATPase-mediated RuvAB-Holliday junction branch migration;Jiri Wald et al.; Nature, 2022; DOI: https://dx.doi.org/10.1038/s41586-022-05121-1
https://www.desy.de/aktuelles/news_suche/index_ger.html?openDirectAnchor=2356&am... - Pressemitteilung im Web mit Bild- und Filmmaterial
Merkmale dieser Pressemitteilung:
Journalisten, Studierende, Wissenschaftler
Biologie, Chemie, Medizin, Physik / Astronomie
überregional
Forschungsergebnisse, Wissenschaftliche Publikationen
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).