idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
31.08.2022 16:23

Kraftketten in granularen Festkörpern auf der Spur: Team unter Göttinger Leiung entwickelt Machine-Learning-Methode

Thomas Richter Öffentlichkeitsarbeit
Georg-August-Universität Göttingen

    Granulares Material ist überall um uns herum: Beispiele sind Sand, Reis, Nüsse, Kaffee und sogar Schnee. Diese Materialien bestehen aus festen Teilchen, deren Zustand durch mechanische Einflüsse bestimmt wird: Durch Schütteln entstehen „granulare Gase“, während man durch Komprimieren „granulare Feststoffe“ erhält. Ein ungewöhnliches Merkmal solcher Festkörper ist, dass sich die Kräfte innerhalb des Materials auf im Wesentlichen linearen Bahnen konzentrieren, die als Kraftketten bezeichnet werden und deren Form der eines Blitzes ähnelt.

    (pug) Forscher unter der Leitung der Universität Göttingen haben mit Hilfe von maschinellem Lernen und Computersimulationen die Position von Kraftketten vorausgesagt. Die Ergebnisse sind in der Fachzeitschrift Nature Communications erschienen.

    Wo sich Kraftketten bilden, hängt auf komplizierte Weise davon ab, wie die einzelnen Teilchen interagieren. Daher ist es schwierig, vorherzusagen, wo sich Kraftketten bilden werden. Durch die Kombination von Computersimulationen und künstlicher Intelligenz haben Forscher des Instituts für Theoretische Physik der Universität Göttingen und der Universität Gent ein neuartiges Werkzeug entwickelt. Damit können sie vorhersagen, wo Kraftketten in granularer Materie entstehen; die Methode lässt sich hierbei unabhängig davon anwenden, ob Reibung zwischen den Teilchen wichtig ist oder nicht. Der Ansatz verwendet eine maschinelle Lernmethode, die als Graph Neural Network (GNN) bekannt ist. Solche Netzwerke können anhand von Daten zu Beispielsystemen trainiert werden, um dann die Position von Kraftketten vorherzusagen, die bei der Verformung eines granularen Systems entstehen.

    „Das Verständnis von Kraftketten ist entscheidend, um die mechanischen Eigenschaften und die Transporteigenschaften von granularen Festkörpern zu beschreiben“, sagt Dr. Rituparno Mandal vom Institut für Theoretische Physik der Universität Göttingen. Dies gilt für eine Vielzahl von Situationen: zum Beispiel, wenn sich Schall in einem granularen Material ausbreitet oder wenn Sand oder eine Packung Kaffeebohnen auf Verformung durch Druck oder Bewegung reagieren. „Eine aktuelle Studie legt sogar nahe, dass Lebewesen wie Ameisen die Wirkung von Kraftkettennetzwerken ausnutzen, wenn sie Erdkörner für einen effizienten Tunnelaushub entfernen.“

    „Wir haben mit verschiedenen, auf maschinellem Lernen basierenden, Werkzeugen experimentiert und festgestellt, dass ein trainiertes GNN bemerkenswert gut aus Trainingsdaten verallgemeinern kann, so dass es in der Lage ist, Kraftketten in neuen unverformten Proben vorherzusagen“, sagt Mandal. „Wir waren fasziniert davon, wie robust die Methode ist: Sie funktioniert außergewöhnlich gut für viele Arten von computergenerierten granularen Materialien. Wir planen derzeit, diese Methode auf experimentelle Systeme im Labor auszuweiten“, fügt Corneel Casert, Erstautor von der Universität Gent, hinzu. Prof. Dr. Peter Sollich vom Institut für Theoretische Physik der Universität Göttingen, erklärt: „Die Effizienz dieser neuen Methode ist für verschiedene Szenarien mit unterschiedlicher Systemgröße, Partikeldichte und Zusammensetzung der verschiedenen Partikeltypen überraschend hoch. Sie wird nützlich sein, um Kraftketten für viele Arten granularer Materie und Systemen zu verstehen.“

    Die Studie wurde durch das Forschungs- und Innovationsprogramm Horizon 2020 der Europäischen Union im Rahmen eines Marie Skłodowska-Curie-Stipendiums ermöglicht.


    Wissenschaftliche Ansprechpartner:

    Dr. Rituparno Mandal
    Georg-August-Universität Göttingen
    Institut für Theoretische Physik
    Friedrich-Hund-Platz 1, 37077 Göttingen
    Telefon: (0)551 39 26958
    E-Mail: rituparno.mandal@theorie.physik.uni-goettingen.de

    Prof. Dr. Peter Sollich
    Georg-August-Universität Göttingen
    Institut für Theoretische Physik
    Friedrich-Hund-Platz 1, 37077 Göttingen
    E-Mail: peter.sollich@theorie.physik.uni-goettingen.de
    www.uni-goettingen.de/en/583011.html


    Originalpublikation:

    Mandal und Casert et al "Robust prediction of force chains in jammed solids using graph neural networks", Nature Communications. Doi: https://doi.org/10.1038/s41467-022-31732-3


    Weitere Informationen:

    http://Die Pressemitteilung und weitere Fotos sind unter https://www.uni-goettingen.de/de/3240.html?id=6789 zu finden.


    Bilder

    Prof. Dr. Peter Sollich
    Prof. Dr. Peter Sollich
    CM/Universität Göttingen

    Dr. Rituparno Mandal
    Dr. Rituparno Mandal
    Debadrita Ghosh


    Merkmale dieser Pressemitteilung:
    Journalisten
    Physik / Astronomie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Prof. Dr. Peter Sollich


    Zum Download

    x

    Dr. Rituparno Mandal


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).