idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Thema Corona

Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
03.10.2022 17:00

Artificial Enzyme Splits Water

Robert Emmerich Presse- und Öffentlichkeitsarbeit
Julius-Maximilians-Universität Würzburg

    Progress has been made on the path to sunlight-driven production of hydrogen. Chemists from Würzburg present a new enzyme-like molecular catalyst for water oxidation.

    Mankind is facing a central challenge: it must manage the transition to a sustainable and carbon dioxide-neutral energy economy.

    Hydrogen is considered a promising alternative to fossil fuels. It can be produced from water using electricity. If the electricity comes from renewable sources, it is called green hydrogen. But it would be even more sustainable if hydrogen could be produced directly with the energy of sunlight.

    In nature, light-driven water splitting takes place during photosynthesis in plants. Plants use a complex molecular apparatus for this, the so-called photosystem II. Mimicking its active centre is a promising strategy for realising the sustainable production of hydrogen. A team led by Professor Frank Würthner at the Institute of Organic Chemistry and the Center for Nanosystems Chemistry at Julius-Maximilians-Universität Würzburg (JMU) is working on this.

    Water splitting is not trivial

    Water consists of one oxygen and two hydrogen atoms. The first step of water splitting is a challenge: to release the hydrogen, the oxygen must be removed from two water molecules. To do this, it is first necessary to remove four electrons and four protons from the two water molecules.

    This oxidative reaction is not trivial. Plants use a complex structure to catalyse this process, consisting of a cluster with four manganese atoms over which the electrons can spread. Würthner's team has developed a similar solution within their first breakthrough published in the journals Nature Chemistry and Energy & Environmental Science in 2016 and 2017, a kind of "artificial enzyme" that can manage the first step of water splitting. This water oxidation catalyst, which consists of three Ruthenium centres interacting in a macrocyclic architecture, successfully catalyses the thermodynamically-demanding process of water oxidation.

    Success with an artificial pocket

    Now, chemists at JMU have succeeded in making the sophisticated reaction take place efficiently on a single ruthenium centre. In the process, they have even achieved similarly high catalytic activities as in the natural model, the photosynthetic apparatus of plants.

    "This success was made possible because our doctoral student Niklas Noll created an artificial pocket around the Ruthenium catalyst. Therein, the water molecules for the desired proton-coupled electron transfer are arranged in front of the ruthenium centre in a precisely defined arrangement, similar to what happens in enzymes," says Frank Würthner.

    Publication in Nature Catalysis

    The JMU group presents the details of their novel concept in the journal Nature Catalysis. The team consisting of Niklas Noll, Ana-Maria Krause, Florian Beuerle, and Frank Würthner is convinced that this principle is also suitable for improving other catalytic processes.

    The long-term goal of the Würzburg group is to integrate the water oxidation catalyst into an artificial device that splits water into oxygen and hydrogen with the help of sunlight. This will take some time, as the catalyst must be coupled with other components to form a functioning overall system – with light-harvesting dyes and with so-called reduction catalysts.

    Funding

    The European Research Council (ERC) has funded the described work within an ERC Advanced Grant for Frank Würthner (grant agreement No. 787937). Further funding came from the Bavarian Ministry of Science and the Arts within the research network "Solar Technologies go Hybrid".


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Frank Würthner, wuerthner@uni-wuerzburg.de


    Originalpublikation:

    Enzyme-like water preorganization in a synthetic molecular cleft for homogeneous water oxidation catalysis. Nature Catalysis, 3 October 2022, DOI: 10.1038/s41929-022-00843-x


    Bilder

    Enzyme-like water preorganization in front of a Ruthenium water oxidation catalyst.
    Enzyme-like water preorganization in front of a Ruthenium water oxidation catalyst.
    Team Wuerthner
    University of Würzburg


    Merkmale dieser Pressemitteilung:
    Journalisten, jedermann
    Chemie, Energie, Umwelt / Ökologie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Enzyme-like water preorganization in front of a Ruthenium water oxidation catalyst.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).