idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
04.10.2022 16:43

Mikroskopisch kleine Kraken aus dem 3D-Drucker

Marietta Fuhrmann-Koch Kommunikation und Marketing
Universität Heidelberg

    Die mikroskopisch kleinen Tiere wie Geckos und Kraken, die an der Universität Heidelberg mittels 3D-Laserdruck hergestellt wurden, könnten in Forschungsgebieten wie der Mikrorobotik oder Biomedizin neue Möglichkeiten erschließen. Sie bestehen aus neuartigen intelligenten Polymeren, die in ihrer Größe und ihren mechanischen Eigenschaften je nach Anforderung angepasst werden können. Entwickelt wurden diese „lebensechten“ 3D-Mikrostrukturen im Rahmen des Exzellenzclusters „3D Matter Made to Order“, der von der Ruperto Carola und dem Karlsruher Institut für Technologie getragen wird.

    Pressemitteilung
    Heidelberg, 4. Oktober 2022

    Mikroskopisch kleine Kraken aus dem 3D-Drucker
    Neu entwickelte intelligente Polymere verfügen über „lebensechte“ Eigenschaften

    Auf den ersten Blick nur possierliche Tierchen: Die mikroskopisch kleinen Geckos und Kraken, die in den Laboren des Molecular Engineering der Universität Heidelberg mittels 3D-Laserdruck hergestellt wurden, könnten jedoch in Forschungsgebieten wie der Mikrorobotik oder Biomedizin neue Möglichkeiten erschließen. Die gedruckten Mikrostrukturen bestehen aus neuartigen Materialien – sogenannten intelligenten Polymeren –, die in ihrer Größe und ihren mechanischen Eigenschaften je nach Anforderung mit hoher Präzision angepasst werden können. Entwickelt wurden diese „lebensechten“ 3D-Mikrostrukturen im Rahmen des Exzellenzclusters „3D Matter Made to Order“ (3DMM2O), der von der Ruperto Carola und dem Karlsruher Institut für Technologie (KIT) getragen wird.

    „Die Herstellung programmierbarer Materialien, deren mechanische Eigenschaften je nach Bedarf angepasst werden können, ist für zahlreiche Anwendungen äußerst gefragt“, sagt Juniorprofessorin Dr. Eva Blasco, Leiterin einer Arbeitsgruppe am Organisch-Chemischen Institut und am Institute for Molecular Systems Engineering and Advanced Materials der Universität Heidelberg. Dieses Konzept wird als 4D-Druck bezeichnet. Dabei bezieht sich die zusätzliche vierte Dimension auf die Fähigkeit von dreidimensional gedruckten Objekten, ihre Eigenschaften im Verlauf der Zeit zu verändern. Ein typisches Material für den 4D Druck sind Formgedächtnispolymere – intelligente Materialien, die als Reaktion auf einen externen Stimulus wie die Temperatur aus einem verformten Zustand zu ihrer ursprünglichen Form zurückkehren können.

    Das Team von Prof. Blasco hat kürzlich eines der ersten Beispiele für dreidimensional gedruckte Formgedächtnispolymere auf der Mikroskala vorgestellt. In Zusammenarbeit mit der Arbeitsgruppe des Biophysikers Prof. Dr. Joachim Spatz, Wissenschaftler an der Ruperto Carola und Direktor am Max-Planck-Institut für medizinische Forschung, entwickelten die Forscher ein neues Formgedächtnismaterial, das im Makrobereich ebenso wie im Mikrobereich mit hoher Auflösung 3D-gedruckt werden kann. So entstanden unter anderem boxartige Mikroarchitekturen, deren Deckel sich unter Hitzeeinwirkung schließen und anschließend wieder öffnen lassen. „Diese sehr kleinen Strukturen zeigen bei geringen Auslösetemperaturen außergewöhnliche Formgedächtniseigenschaften, was insbesondere für Bioanwendungen von großem Interesse ist“, sagt Christoph Spiegel, Doktorand in der Arbeitsgruppe von Eva Blasco.

    In einer Folgearbeit ist es den Forschern mithilfe von adaptiven Materialien gelungen, wesentlich komplexere 3D-Mikrostrukturen wie Geckos und Kraken oder auch Sonnenblumen mit „lebensechten“ Eigenschaften herzustellen. Diese Materialien beruhen auf dynamischen chemischen Bindungen. Besonders gut eignen sich nach Angaben der Heidelberger Wissenschaftler dafür sogenannte Alkoxyamine. Nach dem Druckvorgang sorgen diese dynamischen Bindungen dafür, dass die komplexen, mikrometrischen Gebilde in nur wenigen Stunden um das Achtfache ihres Volumens wachsen und sich verhärten, wobei die Form erhalten bleibt. „Herkömmliche Tinten verfügen nicht über solche Eigenschaften“, betont Prof. Blasco. „Adaptive Materialien mit dynamischen Bindungen haben eine vielversprechende Zukunft im Bereich des 3D-Drucks“, so die Chemikerin.

    An der Forschung zu adaptiven Materialien mit „lebensechten“ Eigenschaften waren auch Materialwissenschaftler des Karlsruher Instituts für Technologie (KIT) beteiligt. Die Deutsche Forschungsgemeinschaft und die Carl-Zeiss-Stiftung haben die im Rahmen des Exzellenzclusters 3DMM2O durchgeführten Arbeiten gefördert. Die Forschungsergebnisse wurden in zwei Papers in der Fachzeitschrift „Advanced Functional Materials“ veröffentlicht.

    Kontakt:
    Universität Heidelberg
    Kommunikation und Marketing
    Pressestelle, Telefon (06221) 54-2311
    presse@rektorat.uni-heidelberg.de


    Wissenschaftliche Ansprechpartner:

    Juniorprofessorin Dr. Eva Blasco
    Organisch-Chemisches Institut
    Telefon (06221) 54-19802
    eva.blasco@oci.uni-heidelberg.de


    Originalpublikation:

    C.A. Spiegel, M. Hackner, V.P. Bothe, J.P. Spatz, E. Blasco: 4D Printing of Shape Memory Polymers: From Macro to Micro. Advanced Functional Materials (6 February 2022), https://doi.org/10.1002/adfm.202110580

    Y. Jia, C.A. Spiegel, A. Welle, S. Heißler, E. Sedghamiz, M. Liu, W. Wenzel, M. Hackner, J.P. Spatz, M. Tsotsalas, E. Blasco: Covalent Adaptable Microstructures via Combining Two-Photon Laser Printing and Alkoxyamine Chemistry: Toward Living 3D Microstructures. Advanced Functional Materials (22 September 2022), https://doi.org/10.1002/adfm.202207826


    Weitere Informationen:

    http://www.uni-heidelberg.de/fakultaeten/chemgeo/oci/akblasco/index_Blasco.html – Homepage von Eva Blasco
    http://www.mr.mpg.de/13943515/cellular_biophysics – Homepage von Joachim Spatz
    http://www.3dmm2o.de – Exzellenzcluster 3DMM2O


    Bilder

    Intelligente Polymere mit „lebensechten“ Eigenschaften: Aufgrund dynamischer chemischer Verbindungen können die mikrometrischen 3D-Gebilde innerhalb weniger Stunden um das Achtfache ihres Volumens wachsen und sich verhärten. Skala: 20 Mikrometer (µm).
    Intelligente Polymere mit „lebensechten“ Eigenschaften: Aufgrund dynamischer chemischer Verbindungen ...

    Christoph Spiegel (Universität Heidelberg). Adaptiert aus Y. Jia et. al, Adv. Funct. Mater. 2022, 2207826 (CC BY 4.0)


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Chemie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Intelligente Polymere mit „lebensechten“ Eigenschaften: Aufgrund dynamischer chemischer Verbindungen können die mikrometrischen 3D-Gebilde innerhalb weniger Stunden um das Achtfache ihres Volumens wachsen und sich verhärten. Skala: 20 Mikrometer (µm).


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).