idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
27.10.2022 12:54

A pocket full of water molecules – how actin filaments drive the cell’s motion

Johann Jarzombek Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für molekulare Physiologie

    Actin filaments are protein fibers that make up the internal skeleton of the cell. They support cellular processes like the cell’s fusion and are also a major constituent of muscle cells. For the first time, researchers at the Max Planck Institute of Molecular Physiology in Dortmund, Germany, have been successfully able to visualize hundreds of water molecules in the actin filament. Using the technique of electron cryo microscopy (cryo-EM), Stefan Raunser' group reveals in unprecedented detail how actin proteins are arranged together in a filament, how ATP – the cell’s energy source - sits in the protein pocket, and where individual water molecules position themselves and react with ATP.

    “We are answering fundamental questions of life that scientists have been trying to answer for several decades”, remarks Raunser. In eukaryotic cells, actin proteins are abundant and tend to join together (polymerize) into filaments. These filaments make up the network that constitutes the cytoskeleton of the cell and controls various cell processes through movement. Immune cells, for example, use actin filaments to move and hunt bacteria and viruses. Researchers knew already that the filaments’ dynamics is regulated by ATP hydrolysis – the reaction of ATP with water that cleaves a phosphate group and generates energy. What previously remained unanswered, however, was the exact molecular details behind this process.

    Too flexible, too big? – not for cryo-EM
    As actin filaments are too flexible or too big for X-ray crystallization and nuclear magnetic resonance, cryo-EM has been the only technique viable for obtaining detailed images. In 2015, Raunser’s team used cryo-EM to picture a novel three-dimensional atomic model of the filaments, with a resolution of 0.37 nanometres. In 2018, his group described the three different states that actin proteins acquire in the filament: bound to ATP, bound to ADP in the presence of the cleaved phosphate, bound to ADP after release of the phosphate.

    How water molecules move
    In their current study, Raunser and his colleagues were able to set a new resolution record: they obtained all three actin-states with a resolution of about 0.2 nanometers, making previously invisible details visible. The three-dimensional maps not only display all amino-acid sidechains of the proteins but also reveal where hundreds of water molecules are placed. Through comparison between these new structures and those of isolated actin, they were able to infer how water molecules move. Upon polymerization, water molecules relocate in the ATP pocket in such a way, that only a single water molecule remains in front of ATP, ready to attack one phosphate and initiate hydrolysis. The accuracy obtained through this approach can help further research in the field: “Our high-resolution model can propel scientists in designing small molecules for light microscopy research on tissues, and ultimately in therapeutic applications”, Raunser says.

    A door opener!?
    The authors also cast light on the final fate of the phosphate. Previously, scientists believed there to be a back door in the ATP pocket that remains open after ATP hydrolysis to facilitate the exit of the phosphate. However, the new cryo-EM structures show no trace of open backdoors. Hence, the release mechanism remains a mystery. “We believe there to be a door, but it likely opens momentarily”, comments Raunser, who now wants to use mathematical simulations and time-resolved cryo-EM methods to demonstrate just how the phosphate exits. Evidently, these exciting discoveries have opened the door for scientists to dig deeper in the hopes of discovering even more details behind the processes by which actin filaments contribute to the cell’s motion.


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Stefan Raunser
    Max Planck Institute of Molecular Physiology
    Tel.: +49 231 133 2300
    email: Stefan.Raunser@mpi-dortmund.mpg.de


    Originalpublikation:

    Oosterheert W, Klink B. U, Belyy A, Pospich S, Raunser S (2022). Structural Basis of actin filament assembly and aging. Nature. DOI: 10.1038/s41586-022-05241-8


    Weitere Informationen:

    https://www.mpi-dortmund.mpg.de/news/raunser-nature-actin-water


    Bilder

    Cryo-EM reconstruction of F-actin bound to Mg2+-ADP-BeF3. at 2.2 Å resolution. The central actin subunit is colored blue, the other four subunits are grey. Densities corresponding to water molecules are colored red and ADP in yellow.
    Cryo-EM reconstruction of F-actin bound to Mg2+-ADP-BeF3. at 2.2 Å resolution. The central actin sub ...

    MPI of Molecular Physiology

    First-author Wout Oosterheert in front of the Talos Arctica Cryo-TEM.
    First-author Wout Oosterheert in front of the Talos Arctica Cryo-TEM.

    MPI of Molecular Physiology


    Merkmale dieser Pressemitteilung:
    Journalisten, Lehrer/Schüler, Studierende, Wirtschaftsvertreter, Wissenschaftler, jedermann
    Biologie, Chemie, Medizin
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Cryo-EM reconstruction of F-actin bound to Mg2+-ADP-BeF3. at 2.2 Å resolution. The central actin subunit is colored blue, the other four subunits are grey. Densities corresponding to water molecules are colored red and ADP in yellow.


    Zum Download

    x

    First-author Wout Oosterheert in front of the Talos Arctica Cryo-TEM.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).