idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
14.12.2022 10:10

Sonnenenergie von beiden Seiten nutzen: Neues Verfahren steigert Wirkungsgrad «bifazialer» CIGS-Dünnschichtsolarzellen

Dr. Michael Hagmann Kommunikation
Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

    Bifaziale Dünnschichtsolarzellen auf der Basis von Kupfer-Indium-Gallium-Diselenid (CIGS) fangen Sonnenenergie sowohl auf der Vorder- als auch auf der Rückseite ein – und erzeugen so potenziell mehr Solarstrom als herkömmlichen Solarzellen. Bislang hat ihre Herstellung jedoch nur relativ tiefe Wirkungsgrade bei der Energieumwandlung erlaubt. Ein Empa-Team hat nun einen neuen Tieftemperatur-Produktionsprozess entwickelt, der Rekord-Wirkungsgrade von 19,8% für die Vorderseite und 10,9% für die Rückseite ermöglicht. Zudem haben sie die erste bifaziale Perowskit-CIGS-Tandemsolarzelle hergestellt, wie sie kürzlich in «Nature Energy« berichteten, was weit höhere Energieerträge ermöglichen könnte.

    Die Idee klingt simpel: Wenn ich sowohl direktes Sonnenlicht als auch seine Reflexion – über die Rückseite der Solarzelle – einfangen könnte, sollte dies die Energieausbeute erhöhen. Mögliche Anwendungen sind zum Beispiel gebäudeintegrierte Photovoltaik, Agrivoltaik – die gleichzeitige Nutzung von Flächen für die photovoltaische Stromerzeugung und die Landwirtschaft – und vertikal installierte Solarmodule auf hochgelegenen Flächen, etwa im Gebirge. Hier kommt die bifaziale Solarzelle ins Spiel. Laut «International Technology Roadmap of Photovoltaics» könnten bifaziale Solarzellen bis 2030 einen Marktanteil von 70% des gesamten Photovoltaikmarktes erobern.
    Obwohl bifaziale Solarzellen auf der Basis von Siliziumwafern bereits auf dem Markt sind, hinken Dünnschichtsolarzellen bisher hinterher. Dies ist zumindest teilweise auf den eher geringen Wirkungsgrad bifazialer CIGS-Dünnschichtsolarzellen zurückzuführen, der mit dem Aufbau der Solarzelle zusammenhängt: Damit eine bifaziale Solarzelle das reflektierte Sonnenlicht auf ihrer Rückseite aufnehmen und in Strom umwandeln kann, muss der rückseitige elektrische Kontakt optisch transparent sein. Dies wird durch die Verwendung eines transparenten leitfähigen Oxids erreicht, das den normalerweise lichtundurchlässigen Rückseitenkontakt in konventionellen – d.h. monofazialen – Solarzellen aus Molybdän ersetzt.

    Eine verhängnisvolle Oxidbildung

    Und genau da beginnen die Probleme: Hocheffiziente CIGS-Solarzellen werden in der Regel in einem Hochtemperatur-Abscheideverfahren hergestellt, d.h. bei Temperaturen über 550 Grad. Bei diesen Temperaturen kommt es jedoch zu einer chemischen Reaktion zwischen dem Gallium (in der CIGS-Schicht) und dem Sauerstoff des transparenten Rückkontakts – ein Oxid. Die daraus resultierende Galliumoxid-Grenzschicht blockiert den Fluss des Solarstroms und verringert somit die Energieumwandlungseffizienz der Zelle. Die höchsten bisher in einer einzelnen Zelle erreichten Werte liegen bei 9.0 % für die Vorderseite und 7.1 % für die Rückseite. «Es ist wirklich schwierig, eine gute Energieumwandlungseffizienz für Solarzellen mit transparenten leitenden Kontakten sowohl auf der Vorder- wie auch auf der Rückseite zu erreichen», sagt Ayodhya N. Tiwari, Leiter des Empa-Labors für Dünnschicht und Photovoltaik.
    Deshalb hat der Doktorand Shih-Chi Yang in der Forschungsgruppe von Romain Carron in Tiwaris Labor einen neuen Niedertemperatur-Abscheidungsprozess entwickelt, bei dem deutlich weniger des unerwünschten Galliumoxids entstehen sollte – im Idealfall gar keines. Die Forscher fügten eine winzige Menge Silber hinzu, um den Schmelzpunkt der CIGS-Legierung zu senken und Lichtabsorberschichten mit guten elektronischen Eigenschaften bei gerade einmal 350 Grad Abscheidungstemperatur zu erhalten. Und tatsächlich: Als sie die Mehrschichtstruktur mit Hilfe von Tiwaris ehemaligem Postdoc Tzu-Ying Lin, der zurzeit an der «National Tsing Hua University» in Taiwan arbeitet, mit hochauflösender Transmissionselektronenmikroskopie analysierten, konnte das Team keinerlei Galliumoxid an der Grenzfläche detektieren.

    Das ehrgeizige Ziel: eine Energieausbeute von mehr als 33%

    Dies schlug sich auch in einer drastisch verbesserten Energieumwandlungseffizienz nieder: Die Zelle lieferte Werte von 19.8% für die Vorderseite und 10.9 % für die Rückseite, die vom Fraunhofer-Institut für Solare Energiesysteme (ISE) in Freiburg unabhängig bestätigt wurden – in derselben Zelle auf einem Glassubstrat. Darüber hinaus gelang es dem Team erstmals, eine bifaziale CIGS-Solarzelle auf einem flexiblen Polymersubstrat herzustellen, die aufgrund ihres geringen Gewichts und ihrer Flexibilität das Spektrum möglicher Anwendungen erheblich erweitert. Und schliesslich kombinierten die Forscher zwei Photovoltaik-Technologien – CIGS- und Perowskit-Solarzellen – zu einer bifazialen «Tandemzelle». Laut Tiwari hat die bifaziale CIGS-Technologie das Potenzial, Energieumwandlungswirkungsgrade von über 33 % zu erzielen, was weitere Möglichkeiten für Dünnschichtsolarzellen in der Zukunft eröffnet. Tiwari gleist derzeit eine Zusammenarbeit mit wichtigen Labors und Unternehmen in ganz Europa auf, um die Entwicklung der Technologie und ihre industrielle Herstellbarkeit in grösserem Massstab voranzutreiben.


    Wissenschaftliche Ansprechpartner:

    Dr. Romain Carron
    Thin Film and Photovoltaics
    Tel: +41 58 765 47 91
    romain.carron@empa.ch

    Prof. Dr. Ayodhya N. Tiwari
    Thin Film and Photovoltaics
    Tel: +41 58 765 41 30
    ayodhya.tiwari@empa.ch


    Originalpublikation:

    https://doi.org/10.1038/s41560-022-01157-9 S-C Yang, T-Y Lin, M Ochoa, H Lai, R Kothandaraman, F Fu, AN Tiwari & R Carron; Efficiency boost of bifacial Cu(In,Ga)Se2 thin-film solar cells for flexible and tandem applications with silver-assisted low-temperature process; Nature Energy (2022


    Weitere Informationen:

    https://www.empa.ch/web/s604/bifacial-cigs Empa-Homepage


    Bilder

    Die Empa-Forscher Shih-Chi Yang (links) und Romain Carron bei der Beschichtungsanlage für die CIGS-Schicht, die das Licht zur Umwandlung in Strom absorbiert.
    Die Empa-Forscher Shih-Chi Yang (links) und Romain Carron bei der Beschichtungsanlage für die CIGS-S ...

    Empa


    Merkmale dieser Pressemitteilung:
    Journalisten
    Energie, Werkstoffwissenschaften
    überregional
    Forschungsergebnisse
    Deutsch


     

    Die Empa-Forscher Shih-Chi Yang (links) und Romain Carron bei der Beschichtungsanlage für die CIGS-Schicht, die das Licht zur Umwandlung in Strom absorbiert.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).