idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project

idw-News App:


Google Play Store

19.01.2023 14:19

Storing energy sustainably

Dr. Ute Schönfelder Abteilung Hochschulkommunikation/Bereich Presse und Information
Friedrich-Schiller-Universität Jena

    The team led by Prof. Andrea Balducci of the University of Jena’s Institute of Technical and Envi-ronmental Chemistry is starting two projects this month as part of the EU programme “Novel materials for supercapacitor energy storage” and will receive funding totalling around 950,000 euros. The aim is to develop innovative supercapacitors that are not only more efficient than ex-isting systems, but above all also more sustainable.

    The EU wants to be climate neutral by 2050. This ambitious goal can only be achieved if all ma-jor sectors – from transport, through industrial production to energy provision – rely exclusively on renewable energy sources instead of fossil fuels. But it is not only energy resources and their extraction that are crucial. “In addition, energy storage systems need to buffer the temporal and spatial energy fluctuations associated with the use of renewable sources in a climate-friendly way,” explains Andrea Balducci.

    Lithium-ion batteries can store large amounts of energy and for this reason they are currently used in a wide variety of devices, from smartphones to electric cars. However, their manufacture requires the use of nonabundant metals, such as lithium and cobalt, the extraction of which causes great environmental damage. “Even if lithium-ion batteries are currently indispensable, in the medium and long term we will have to find alternative devices to use together with them,” says Balducci. The professor of Applied Electrochemistry and his team are looking for alterna-tives in the two new EU projects.

    Doing without critical source materials

    At the centre of the research efforts are supercapacitors. Compared to batteries, these energy storage devices have the advantage that they can be charged in a matter of seconds and have an almost unlimited lifespan. In the project entitled “Greencap” (Graphene, MXene and ionic liquid-based sustainable supercapacitor), the consortium consisting of teams from seven countries plans to build supercapacitors from 2D materials over the next three years. These should make up for the disadvantage of supercapacitors compared to batteries: the lower energy density. To this end, the researchers are using graphene and MXene, which are currently considered to be two of the most promising materials for energy applications. The Jena chemists are contrib-uting to the project by developing innovative electrolytes based on ionic liquids, as well as mix-tures of these and organic solvents. “Compared to existing electrolytes, these have the advantage that they improve the amount of stored energy and the safety of supercapacitors,” emphasises Prof. Balducci. In addition, ionic liquids are sustainable because they do not require critical raw materials and are easy to recy-cle.

    Another strategy, which is being pursued in the second project, MUSIC (Materials for Sustaina-ble Sodium Ion Capacitors), is to combine the concept of lithium-ion batteries with that of su-percapacitors. At the same time, environmentally harmful lithium is to be replaced by more envi-ronmentally friendly sodium. Within the framework of the project, which is being funded over four years and involves partners from five European countries, sodium-ion capacitors are to be developed to the point where they are market-ready. “These combine the advantages of both existing systems,” explains Balducci. “They will have the energy density of batteries and the lifespan and charging times of supercapacitors.” And they will do so while completely avoiding critical source materials. Again, Balducci and his team will focus primarily on developing and characterising electrolyte solutions, which the researchers specialise in. The aim of the project is to create a prototype of a sodium-ion capacitor.

    Wissenschaftliche Ansprechpartner:

    Prof. Andrea Balducci
    Institute of Technical and Environmental Chemistry of Friedrich Schiller University Jena
    Philosophenweg 7a, 07743 Jena, Germany
    Tel.: +49 (0)3641 9-48464


    Prof. Dr Andrea Balducci from the Institute for Technical Chemistry and Environmental Chemistry at Friedrich Schiller University Jena.
    Prof. Dr Andrea Balducci from the Institute for Technical Chemistry and Environmental Chemistry at F ...
    Image: Anne Günther

    Merkmale dieser Pressemitteilung:
    Journalisten, Wirtschaftsvertreter, Wissenschaftler
    Chemie, Energie
    Forschungsprojekte, Kooperationen


    Prof. Dr Andrea Balducci from the Institute for Technical Chemistry and Environmental Chemistry at Friedrich Schiller University Jena.

    Zum Download



    Die Suche / Erweiterte Suche im idw-Archiv

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.


    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).


    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.


    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).