idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
01.03.2023 11:21

Künstliche Intelligenz soll Tumorimmunologie helfen

Johannes Seiler Dezernat 8 - Hochschulkommunikation
Rheinische Friedrich-Wilhelms-Universität Bonn

    Der Erfolg einer Krebstherapie hängt nicht nur von der Art des Tumors ab, sondern ebenso vom umgebenden Gewebe. Tumore beeinflussen es zu ihrem Vorteil, fördern das Wachstum von Blutgefäßen oder täuschen einwandernde Immunzellen. Methoden zu entwickeln, mit denen die Beschaffenheit des so entstehenden Tumormikromilieus vorausgesagt werden kann, ist Ziel von Forschenden der Exzellenzcluster ImmunoSensation2 und Hausdorff Center for Mathematics (HCM) um Prof. Kevin Thurley an der Universität Bonn. Das Bundesministerium für Bildung und Forschung (BMBF) fördert das Projekt „InterpretTME“ in den nächsten drei Jahren mit rund 800.000 Euro.

    Die Krebstherapie wurde in der vergangenen Dekade durch die neuen Methoden der Immuntherapie revolutioniert. Dabei wird ein Tumor nicht direkt angegriffen, sondern die vorhandenen Zellen des Immunsystems genutzt. Diese sind eigentlich in der Lage, entartete Tumorzellen zu erkennen und zu beseitigen. Viele Tumore haben jedoch die Fähigkeit, eine effektive Immunantwort zu verhindern oder stark einzuschränken. Die Immuntherapie hat zum Ziel, das fehlgeleitete Immunsystem wieder in die Lage zu versetzen, die Tumorzellen zu erkennen und zu vernichten.

    Die Rolle des Tumormikromilieus

    Eine Immuntherapie gegen Krebs ist nicht bei allen Patientinnen und Patienten erfolgversprechend. Es hat sich gezeigt, dass Resistenzen gegen Krebsimmuntherapien häufig mit der Zusammensetzung des Tumormikromilieus (TME) in Verbindung stehen. In der Onkologie werden die Eigenschaften des TME bereits heute als Biomarker genutzt, um Prognosen zur Entwicklung einer Krebserkrankung treffen zu können. Dazu verwendet man bildgebende Verfahren, die die Art und Lage der einzelnen Zellen innerhalb des TME abbilden. Es entstehen Muster gigantischer Zellverbände, die in ihrer Gesamtheit und Struktur Einfluss auf den Erfolg oder Misserfolg einer Krebsimmuntherapie nehmen. Wie genau das funktioniert, bleibt jedoch schwer zu fassen.

    “Neue hochauflösende Bildgebungstechniken haben gezeigt, dass Krankheitsmechanismen tatsächlich mit Details der räumlichen Anordnung von bestimmten Zelltypen im Gewebe zusammenhängen”, sagt Prof. Kevin Thurley vom Institut für Experimentelle Onkologie, der die Arbeitsgruppe „Systems Biology of Inflammation“ der interdisziplinären Forschungseinheit „Mathematics and Life Sciences“ der Exzellenzcluster ImmunoSensation2 und Hausdorff Center for Mathematics (HCM) leitet. „Mit einer Kombination aus Methoden der mathematischen Modellierung und der Künstlichen Intelligenz werden wir diese Phänomene genau untersuchen, in direkter Zusammenarbeit mit experimenteller und klinischer Forschung am UKB.”

    Künstliche Intelligenz zur Analyse von Geweben

    Die auf Künstlicher Intelligenz (KI) basierenden Methoden zur Bildanalyse sind heute bereits weit fortgeschritten. Anders sieht es bei der Simulation komplexer Systeme aus – angesichts vieler miteinander interagierender Zellen innerhalb eines Gewebes. Wegen der großen Anzahl beteiligter Zelltypen, der dort ablaufenden unterschiedlichen zellulären Prozesse und der komplexen Gewebsarchitektur ist eine solche Simulation äußerst rechenintensiv. Sie kann jedoch helfen, das TME eines Tumors zu simulieren und so Rückschlüsse auf die Tumorentwicklung zu ziehen.

    Erkenntnisse zur Immuntherapie durch maschinelles Lernen

    Das übergeordnete Ziel von „InterpretTME“ ist die Entwicklung interpretierbarer Methoden des maschinellen Lernens (ML) für die Untersuchung komplexer Zellsysteme. Diese sollen genutzt werden, um Erkenntnisse zur Beschaffenheit von TMEs zu gewinnen. “Maschinelle Lernverfahren werden in der Klinik bereits an vielen Stellen verwendet, um Bilddaten zu verarbeiten“, erklärt Prof. Jan Hasenauer, vom Life & Medical Sciences-Institut (LIMES) der Universität Bonn. „Wir werden einen Schritt weiter gehen und untersuchen, wieweit auch Informationen über Mechanismen erlangt werden können.” Zum einen soll erforscht werden, welche Rolle einzelne im TME vorhandenen Immunzelltypen für die Entwicklung unterschiedlicher Tumortypen spielen. Darüber hinaus wollen die Forschenden ermitteln, welchen Effekt Chemotherapeutika und biologische Medikamente auf das TME unterschiedlicher Tumorarten haben. An dem Projekt wirken auch Prof. Michael Hölzel und Prof. Marieta Toma vom Universitätsklinikum Bonn und Prof. Alexander Effland von der Universität Bonn mit.

    Kontakt für die Medien:

    Dr. David Fußhöller
    Exzellenzcluster ImmunoSensation2
    Universität Bonn
    Tel. +49 (0) 228 287 512 83
    E-Mail: David.fusshoeller@uni-bonn.de


    Bilder

    Lymphknoten der Maus: Die Farben stehen für Fluoreszenzmarker, die an spezifische Moleküle auf der Oberfläche oder im Inneren einzelner Immunzellen binden.
    Lymphknoten der Maus: Die Farben stehen für Fluoreszenzmarker, die an spezifische Moleküle auf der O ...

    Abbildung: AG Hoelzel/UKB


    Merkmale dieser Pressemitteilung:
    Journalisten, jedermann
    Medizin
    überregional
    Forschungsprojekte
    Deutsch


     

    Lymphknoten der Maus: Die Farben stehen für Fluoreszenzmarker, die an spezifische Moleküle auf der Oberfläche oder im Inneren einzelner Immunzellen binden.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).