Wissenschaftler der Universität Regensburg forschen an Quantenschaltkreisen aus exotischen Nanoröhren
Molybdändisulfid MoS₂ ist ein bahnbrechendes Material für elektronische Miniaturisierung. Als zweidimensionale Schicht ähnlich zu Graphen ist es ein hervorragender Halbleiter, der sogar unter den richtigen Bedingungen intrinsisch supraleitend werden kann. Damit ist es keine große Überraschung, dass Science-Fiction-Autoren schon seit Jahren über „Molycircuits“, fiktionale Computerchips aus MoS₂, spekulieren – und dass Physiker und Ingenieure großen Aufwand in die Erforschung dieses Materials investieren.
„An der Universität Regensburg haben wir langjährige Erfahrung mit der Charakterisierung von Quantenmaterialien bei ultratiefen Temperaturen – insbesondere auch von Kohlenstoff-Nanoröhren, röhrenartigen Makromolekülen, die aus reinem Kohlenstoff bestehen. Damit war es ein natürlicher nächster Schritt, nun MoS₂ und seine faszinierenden Eigenschaften zu untersuchen,“ so PD Dr. Andreas K. Hüttel, Leiter der Forschungsgruppe „Nanoröhren-Elektronik und Nanomechanik“ an der Universität Regensburg. In Zusammenarbeit mit Prof. Dr. Maja Remškar, Jožef Stefan Institut Ljubljana, Expertin für das kristalline Wachstum derartiger Stoffe, begann seine Arbeitsgruppe die Entwicklung von Chipelementen basierend auf MoS₂-Nanoröhren.
„Bei MoS₂ ist das Erreichen diskreter Quantenzustände, wie man sie für Qubits und Quantencomputer braucht, mit flachen Materialflocken auf einer Chipoberfläche ziemlich schwierig. Genau deshalb interessieren wir uns für diese exotischen Nanoröhren aus MoS₂. Die Nanoröhren können defekt- und kontaminationsfrei gewachsen werden, mit minimalen Durchmessern von ~20nm – und dadurch erhält man automatisch die kleinen Strukturabmessungen, die für Quanteneffekte nötig sind.“
Die anfängliche Herausforderung war es, guten metallischen Kontakt zu den Nanostrukturen zu erreichen. Metalle, mit denen sich dies bei Raumtemperatur realisieren lässt, reagieren typischerweise mit der MoS₂-Oberfläche und zerstören dadurch den Kristall – ein Problem, das gleichermaßen „flache“ MoS₂-Flocken betrifft, für Nanoröhren mit ihren kleinen Oberflächen und Querschnitten jedoch um so kritischer ist. „Jetzt können wir endlich Strukturen herstellen, die selbst bei den tiefen Temperaturen, wie man sie typischerweise für elektronische Quanteneffekte und Quantencomputer braucht, gut elektrisch leitend sind, und in denen das Molybdändisulfid intakt bleibt,“ so Dr. Hüttel.
Und das ist noch nicht alles – die Vorteile der Nanoröhren zeigten sich sofort. „Bis jetzt haben wir aus praktischen Gründen relativ große Nanoröhren und -bänder verwendet. Trotzdem konnten wir aber zeigen, dass in unserem Tieftemperaturmessplatz bei Temperaturen unter 0.1K Strom durch diskrete elektronische Quantenzustände fließt – und das ist ein großer Schritt hin zu kontrollierbaren Qubits in MoS₂.“
PD Dr. Andreas K. Hüttel
Institut für Experimentelle und Angewandte Physik
Universität Regensburg
Tel.: +49 (0)941 943 1618
E-Mail: andreas.huettel@ur.de
“Non-Destructive Low-Temperature Contacts to MoS2 Nanoribbon and Nanotube Quantum Dots"
Robin T. K. Schock, Jonathan Neuwald, Wolfgang Möckel, Matthias Kronseder, Luka Pirker, Maja Remškar, und Andreas K. Hüttel; Advanced Materials, doi:10.1002/adma.202209333 (2023)
https://onlinelibrary.wiley.com/doi/full/10.1002/adma.202209333
Ultratieftemperatur-Kryostat mit Thermometern und Verkabelung
Dr. Andreas K. Hüttel
Dr. Andreas K. Hüttel, Universität Regensburg
Elektronenmikroskop-Bild von MoS2-Nanomaterial, mit Flocken, Bändern, und Nanoröhren
Dr. Luka Pirker
Dr. Luka Pirker, Jožef Stefan Institut Ljubljana
Merkmale dieser Pressemitteilung:
Journalisten, Wirtschaftsvertreter, Wissenschaftler
Physik / Astronomie
überregional
Forschungsergebnisse, Forschungsprojekte
Deutsch
Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.
Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).
Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.
Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).
Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).