idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
14.04.2023 13:10

Hybride Laserpulse erzeugen gigantische Ströme auf ultrakurzen Zeitskalen

Dimitra Zimani Presse- und Öffentlichkeitsarbeit
Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie im Forschungsverbund Berlin e.V.

    Der Fluss der Materie, von makroskopischen Wasserströmen bis hin zum mikroskopischen Fluss elektrischer Ladung, bildet die Grundlage für einen Großteil der Infrastruktur der modernen Zeit. Um einen nachhaltigen Fortschritt in Bezug auf Energieeffizienz, Datenspeicherkapazität und Verarbeitungsgeschwindigkeit zu erreichen, suchen Wissenschaftler nach Möglichkeiten, den Fluss der Quantenaspekte der Materie zu kontrollieren, z. B. des "Spins" eines Elektrons – also des magnetischen Moments - oder seines "Valley-Zustands", letzteres ein neuer Quantenaspekt der Materie, der in vielen zweidimensionalen Materialien eine entscheidende Rolle spielt.

    Die ultraschnelle Laserkontrolle über die grundlegenden Quantenfreiheitsgrade der Materie ist eine der größten Herausforderung bei der Entwicklung künftiger Informationstechnologien, jenseits heutiger Halbleiterelektronik. Zwei der vielversprechendsten Quantenfreiheitsgrade in dieser Hinsicht sind der Spin des Elektrons und der "Valley Index", letzterer ein neuer Freiheitsgrad in zweidimensionalen Materialien, der mit dem Quasiteilchenimpuls zusammenhängt. Sowohl die Spintronik als auch die Valleytronik bieten viele potenzielle Vorteile gegenüber der klassischen Elektronik in Bezug auf die Geschwindigkeit der Datenverarbeitung und die Energieeffizienz. Während jedoch Spinanregungen durch Spin-Bahn induzierte Spinpräzession ihren Charakter verlieren, stellt die Valley-Wellenfunktion eine stabile "Dateneinheit bzw. ein stabiles „bit“ dar. Allein Übergänge in andere Valleys können die Stabilität negativ beeinflussen, eine Eigenschaft, die jedoch durch die Qualität der Probe kontrolliert werden kann. Die Valleytronik stellt somit eine robuste Plattform dar, die der klassischen Elektronik potenziell überlegen ist.

    Das Herzstück künftiger Valleytronik- oder Spintronik-Technologien wird neben Quantenanregungen, die Dateneinheiten kodieren, in ihrem Transport liegen, also in der Kontrolle und Erzeugung von Valley- und Spinströmen. Während optimierten Lichtimpulsen für die ultrasschnelle und selektive Anregung von Valley-Quasiteilchen große Aufmerksamkeit gewidmet wurde, blieb die präzise Erzeugung und Kontrolle von Valley- und Spinströmen außerhalb des Bereichs der ultraschnellen Lichtkontrolle. In einer kürzlich in Science Advances veröffentlichten Studie hat ein Forscherteam des Max-Born-Instituts in Berlin gezeigt, wie ein hybrider Laserpuls, ein sogenannter „Hahnekamm Puls“, der zwei Polarisationstypen kombiniert, die vollständige Kontrolle über ultraschnelle laserlichtinduzierte Ströme ermöglicht.

    −kvalley Die Kontrolle des Ladungszustands selber lässt sich durch zirkular polarisiertes Licht erreichen, bekannt als "Spin-Valley-Locking" der Übergangsmetall-Dichalcogenide [1]. Dies kann als Folge einer Selektionsregel angesehen werden, die die magnetischen Quantenzahlen der d-Orbitale einbezieht. Während zirkular polarisiertes Licht die Valleyladung anregt, erzeugt es jedoch keinen Valley-Strom, wie in Fig. 1a,b gezeigt ist. Diese Situation entsteht, da für jedes Quasimoment im Valley, das angeregt wird, auch ein entsprechendes angeregt wird: Die Bloch-Geschwindigkeiten heben sich also auf und es gibt keinen Nettostrom im Valley.

    k → k − A(t)/c Die vollständige Kontrolle über die lichtinduzierten Valleyströme, ihre Größe und Richtung, erfordert daher, über das Paradigma des „Spin-Valley-Lockings“ hinauszugehen. Die Erzeugung eines angeregten Zustands im Valley, der zu einem Netto-Valley- und Spinstrom führt, muss daher die Überwindung der lokalen Entartung beinhalten. Da das Laser-Vektorpotenzial direkt an das Quasi-Moment des Kristalls koppelt, lässt sich ein Strom am effektivsten durch einen linear polarisierten Einzelzykluspuls mit einer Dauer erreichen, die mit der des zirkular polarisierten Pulses vergleichbar ist: ein solcher Puls liegt offensichtlich im "THz-Fenster" von 1 THz bis 50 THz. Sharma et al. [2] haben kürzlich die Eigenschaften dieser hybriden Doppelpump-Laserpulse, sogenannter Hahnenkamm-Pulse, untersucht und festgestellt, dass er die vollständige Kontrolle über die Erzeugung von Spin- und Valleystromzuständen erlaubt. Wie in Fig. 1d,e gezeigt, erzeugt diese Hahnenpuls-Lichtform einen beträchtlichen Reststrom (d. h. einen Strom, der nach dem Laserpuls anhält). Dieser resultiert aus einer Nichtaufhebung der Bloch-Geschwindigkeiten des angeregten Quasi-Momentes, da die Verteilung der angeregten Ladung nun um genau den Polarisationsvektor des THz-Pulses vom hochsymmetrischen K-Punkt verschoben ist, wie in Fig. 1f gezeigt.

    ℏωcirc Das physikalische Bild, das der Wirkung dieses Pulses zugrunde liegt, ist in Fig. 2 schematisch dargestellt: Ein Halbzyklus der THz-Komponente des Hahnenkamm-Pulses treibt eine Intraband-Bewegung an, die Zustände zur minimalen Bandlücke treibt (i). An diesem Punkt regt die zirkular polarisierte Komponente diese Ladung über die Bandlücke hinweg an (ii), wobei schließlich der zweite Halbzyklus der THz-Komponente die Ladung zu ihrem ursprünglichen Impuls zurückführt (iii). Auf diese Weise wurde die Ladung mit einem Quasi-Moment q angeregt, dessen Energieunterschied, zwischen Leitungs- und Valenzband nicht der Energie des zirkular polarisierten Lichts entspricht (und damit auch nicht der Bandlücke, auf die dieses Licht abgestimmt ist). Der Polarisationsvektor der THz-Lichtkomponente ist der Schlüsselparameter eines Hahnenkamm-Pulses, wobei die Polarisationsrichtung und -amplitude jeweils die Richtung und Amplitude des lichtinduzierten Stroms bestimmen. Auf diese Weise stellen solche Hahnenkamm-Pulse einen Weg zur direkten Lichtkontrolle über den gleichzeitigen Ladungs- und Stromzustand von valleyaktiven zweidimensionalen Materialien dar und bieten einen neuen Weg zur Valleytronik und Spintronik auf ultrakurzen Zeiten.


    Wissenschaftliche Ansprechpartner:

    Max Born Institut im Forschungsverbund e. V.
    Sangeeta Sharma
    Tel: +4930 6392 1350
    Sangeeta.Sharma@mbi-berlin.de


    Originalpublikation:

    https://www.science.org/doi/10.1126/sciadv.adf3673#tab-contributors
    DOI: 10.1126/sciadv.adf3673


    Weitere Informationen:

    https://mbi-berlin.de/research/highlights/details/laser-light-hybrids-control-gi...


    Bilder

    Fig. 1
    Fig. 1
    MBI
    MBI

    Fig. 2
    Fig. 2
    MBI
    MBI


    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Physik / Astronomie
    überregional
    Wissenschaftliche Publikationen
    Deutsch


     

    Fig. 1


    Zum Download

    x

    Fig. 2


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).