idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
28.04.2023 15:48

Künstliche Intelligenz für die Osteoporose-Diagnostik

Eva Sittig Presse, Kommunikation und Marketing
Christian-Albrechts-Universität zu Kiel

    Forschende der Uni Kiel haben eine Software entwickelt, die Wirbelbrüche auf CT-Bildern automatisch erkennt und prognostisch bewertet.

    Im Alter baut sich die Knochensubstanz vieler Menschen ab. Dieser als Osteoporose bezeichnete Prozess bleibt oft unbemerkt, selbst wenn es zu Brüchen an den Wirbelkörpern kommt. Mittels Röntgenuntersuchung oder Computertomografie (CT) könnte die Wirbelfraktur zwar nachgewiesen werden, aber dazu kommt es nicht immer. Zum Beispiel weil das CT aus anderen Gründen gemacht und ein Wirbelbruch im Alltagsstress in der Klinik übersehen wird. Zur Verbesserung der Osteoporose-Diagnostik haben Forschende um Professor Claus-Christian Glüer von der Sektion Biomedizinische Bildgebung der Klinik für Radiologie und Neuroradiologie am Universitätsklinikum Schleswig-Holstein (UKSH), Campus Kiel, und des Molecular Imaging North Competence Center (MOIN CC), eine Software entwickelt. Das Programm verwendet Methoden der künstlichen Intelligenz (KI) und kann damit automatisch auf Computertomographien, die aus den verschiedensten Gründen aufgenommen werden, Hinweise auf Osteoporose und prognostisch ungünstige Wirbelbrüche erkennen. Die neuesten Ergebnisse stellte der Doktorand der Arbeitsgruppe Eren Yilmaz kürzlich bei der Konferenz „SPIE Medical Imaging“ in San Diego, Kalifornien, vor und publizierte sie im Tagungsband Proceedings of SPIE (Society of Photo-Optical Instrumentation Engineers, SPIE). Gefördert wurden die Arbeiten im Forschungsschwerpunkt Kiel Life Science (KLS) der Christian-Albrechts-Universität zu Kiel (CAU) durch die Projekte ARTEMIS vom Bundesministerium für Bildung und Forschung und KI-RAD vom Bundesministerium für Wirtschaft und Energie.

    KI erkennt 9 von 10 Wirbelbrüchen in CT-Bildern

    Oft werden CT-Bilder vom Brustkorb aufgenommen, um zum Beispiel die Lunge anzuschauen. Die Wirbelsäule ist zwar auf dem Bild zu sehen, wird aber nicht geprüft, weil vielleicht ein anderes Problem im Vordergrund steht. „Unser Programm kann bei solchen Untersuchungen im Hintergrund laufen. Es schaut sich automatisch die Wirbelsäule an und gibt einen Hinweis auf Frakturen der Wirbelkörper, die ansonsten vielleicht nicht entdeckt worden wären“, erklärt Erstautor Yilmaz. Das ist wichtig, denn das Vorhandensein von Wirbelfrakturen erhöht das Risiko weiterer Brüche erheblich. Die Software arbeitet mit sogenannten neuronalen Netzen. Das sind Algorithmen, die der Funktionsweise des menschlichen Gehirns nachempfunden sind, und häufig eingesetzt werden, um Muster zu erkennen. An 159 CT-Bildern der Wirbelsäule, die aus sieben Krankenhäusern Deutschlands stammten, wurde die KI getestet. Erfahrenen Radiologinnen und Radiologen begutachteten zuvor die Bilder und entdeckten 170 Frakturen. „90 Prozent der Fälle mit Frakturen klassifizierte das neuronale Netz korrekt sowie 87 Prozent der Wirbel ohne Frakturen“, berichtet Yilmaz.

    Darüber hinaus kann das Programm aber nicht nur Brüche erkennen, sondern auch zwischen milden Frakturen (Grad 1) und schwereren (Grad 2 oder höher) unterscheiden. „Diese Diagnostik ist für Abschätzung der zukünftigen Frakturrisikos entscheidend“, so Yilmaz. Dies gelte insbesondere auch für Hüftfrakturen, die gerade im Alter mit hoher Einschränkung von Lebensqualität und erhöhter Sterblichkeit einhergehen. „Wir entwickeln somit ein Frühwarnsystem zur Prävention schwerwiegender Konsequenzen von Osteoporose“. Für den generellen Einsatz in der Klinik ist die Technik noch nicht verfügbar. Sie soll aber in absehbarer Zeit zumindest für Forschungszwecke eingesetzt werden können.

    Über Kiel Life Science (KLS)
    Das interdisziplinäre Zentrum für angewandte Lebenswissenschaften – Kiel Life Science (KLS) – vernetzt an der CAU Forschungen aus den Agrar- und Ernährungswissenschaften, den Naturwissenschaften und der Medizin. Es bildet einen von vier Forschungsschwerpunkten an der Universität Kiel und will die zellulären und molekularen Prozesse besser verstehen, mit denen Lebewesen auf Umwelteinflüsse reagieren. Im Mittelpunkt der Forschung stehen Fragen, wie sich landwirtschaftliche Nutzpflanzen an spezielle Wachstumsbedingungen anpassen oder wie im Zusammenspiel von Genen, dem individuellen Lebensstil und Umweltfaktoren Krankheiten entstehen können. Gesundheit wird dabei immer ganzheitlich im Kontext der Evolution betrachtet. Unter dem Dach des Forschungsschwerpunkts sind derzeit rund 80 Wissenschaftlerinnen und Wissenschaftler aus 40 Instituten und sechs Fakultäten der CAU als Vollmitglieder versammelt.

    Fotos stehen zum Download bereit:
    https://www.uni-kiel.de/de/pressemitteilungen/2023/115-scan.png
    2D-Schnittbild einer CT-Aufnahme auf der zwei Frakturen zu sehen sind. Sie wurden von der KI richtigerweise als moderat (Grad 2) klassifiziert. Die anderen Wirbel wurden korrekt als "normal" (Grad 0) erkannt
    © Eren Yilmaz

    https://www.uni-kiel.de/de/pressemitteilungen/portraitbilder/eren-yilmaz.jpg
    Der Informatiker Eren Yilmaz entwickelt in seiner Promotion Methoden der Künstlichen Intelligenz zur Bilderkennung
    © privat

    Weitere Informationen:
    Molecular Imaging North Competence Center (MOIN CC), Medizinische Fakultät, CAU
    https://www.moincc.de

    Forschungsschwerpunkt Kiel Life Science, CAU:
    https://www.kls.uni-kiel.de

    Christian-Albrechts-Universität zu Kiel Presse, Kommunikation und Marketing,
    Eva Sittig, Text/Redaktion: Kerstin Nees
    Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
    E-Mail: presse@uv.uni-kiel.de Internet: www.uni-kiel.de Twitter: www.twitter.com/kieluni
    Facebook: www.facebook.com/kieluni Instagram: www.instagram.com/kieluni


    Wissenschaftliche Ansprechpartner:

    Eren Yilmaz
    Sektion Biomedizinische Bildgebung
    Molecular Imaging North Competence Center (MOIN CC), Medizinische Fakultät, CAU
    Klinik für Radiologie und Neuroradiologie, UKSH, Campus Kiel
    Tel.: 0431- 500-15123
    E-Mail: eren.yilmaz@rad.uni-kiel.de


    Originalpublikation:

    Eren B. Yilmaz, Tobias Fricke, Julian Laue, Constanze Polzer, Sam Sedaghat, Jan-Bernd Hövener, Claus-Christian Glüer, Carsten Meyer, "Towards fracture risk assessment by deep-learning-based classification of prevalent vertebral fractures," Proc. SPIE 12465, Medical Imaging 2023: Computer-Aided Diagnosis, 124651D (7 April 2023); https://doi.org/10.1117/12.2653526


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie, Informationstechnik, Medizin
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).