idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
04.05.2023 09:05

Quantum computer in reverse gear: Reversible logic gates designed for large scale integer factorization.

Dr. Christian Flatz Büro für Öffentlichkeitsarbeit
Universität Innsbruck

    Large numbers can only be factorized with a great deal of computational effort. Physicists at the University of Innsbruck, Austria, led by Wolfgang Lechner are now providing a blueprint for a new type of quantum computer to solve the factorization problem, which is a cornerstone of modern cryptography.

    Today's computers are based on microprocessors that execute so-called gates. A gate can, for example, be an AND operation, i.e. an operation that adds two bits. These gates, and thus computers, are irreversible. That is, algorithms cannot simply run backwards. “If you take the multiplication 2*2=4, you cannot simply run this operation in reverse, because 4 could be 2*2, but likewise 1*4 or 4*1,” explains Wolfgang Lechner, professor of theoretical physics at the University of Innsbruck. If this were possible, however, it would be feasible to factorize large numbers, i.e. divide them into their factors, which is an important pillar of cryptography.

    Martin Lanthaler, Ben Niehoff and Wolfgang Lechner from the Department of Theoretical Physics at the University of Innsbruck and the quantum spin-off ParityQC have now developed exactly this inversion of algorithms with the help of quantum computers. The starting point is a classical logic circuit, which multiplies two numbers. If two integers are entered as the input value, the circuit returns their product. Such a circuit is built from irreversible operations. “However, the logic of the circuit can be encoded within ground states of a quantum system,” explains Martin Lanthaler from Wolfgang Lechner's team. “Thus, both multiplication and factorization can be understood as ground-state problems and solved using quantum optimization methods.”

    Superposition of all possible results

    „The core of our work is the encoding of the basic building blocks of the multiplier circuit, specifically AND gates, half and full adders with the parity architecture as the ground state problem on an ensemble of interacting spins,” says Martin Lanthaler. The coding allows the entire circuit to be built from repeating subsystems that can be arranged on a two-dimensional grid. By stringing several of these subsystems together, larger problem instances can be realized. Instead of the classical brute force method, where all possible factors are tested, quantum methods can speed up the search process: To find the ground state, and thus solve an optimization problem, it is not necessary to search the whole energy landscape, but deeper valleys can be reached by "tunneling".

    The current research work provides a blueprint for a new type of quantum computer to solve the factorization problem, which is a cornerstone of modern cryptography. This blueprint is based on the parity architecture developed at the University of Innsbruck and can be implemented on all current quantum computing platforms.

    The results were recently published in Nature Communications Physics. Financial support for the research was provided by the Austrian Science Fund FWF, the European Union and the Austrian Research Promotion Agency FFG, among others.


    Wissenschaftliche Ansprechpartner:

    Wolfgang Lechner
    Department of Theoretical Physics
    University of Innsbruck
    +43 512 507 52232
    Wolfgang.Lechner@uibk.ac.at
    https://www.uibk.ac.at/th-physik/quantum-optimization/


    Originalpublikation:

    Scalable set of reversible parity gates for integer factorization. Martin Lanthaler, Benjamin E. Niehoff & Wolfgang Lechner. Nature Communications Physics 6, 73 (2023) DOI: https://doi.org/10.1038/s42005-023-01191-3


    Weitere Informationen:

    https://www.uibk.ac.at/en/newsroom/2022/new-form-of-universal-quantum-computers/ - New form of uni­ver­sal quan­tum com­put­ers


    Bilder

    Martin Lanthaler (left) and Wolfgang Lechner (right) from the Department of Theoretical Physics at the University of Innsbruck.
    Martin Lanthaler (left) and Wolfgang Lechner (right) from the Department of Theoretical Physics at t ...

    ParityQC


    Merkmale dieser Pressemitteilung:
    Journalisten, jedermann
    Informationstechnik, Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Martin Lanthaler (left) and Wolfgang Lechner (right) from the Department of Theoretical Physics at the University of Innsbruck.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).