idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
06.06.2023 08:43

Fluoreszenzmarkierung für fälschungssichere Produkte entwickelt - Süßer Code per Laserdruck

Juliane Jury Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Kolloid- und Grenzflächenforschung

    (Potsdam) Ein Forscherteam vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung (MPIKG) hat eine Methode entwickelt, die Produktfälschung zukünftig erschweren könnte. Mit diesem neuen, patentierten Verfahren ist es möglich, einzigartige, nicht kopierbare Fluoreszenzmuster schnell, umweltfreundlich und preiswert zu erzeugen.

    Durch Fälschungen von Elektronik, Zertifikaten oder Medikamenten entstehen jährlich weltweit wirtschaftliche Verluste in Milliardenhöhe. Schätzungen des EU-Statusberichts über Rechtsverletzungen (EQUIPO, 2019) zufolge betragen die Umsatzeinbußen der europäischen Pharmaindustrie, die jährlich durch gefälschte Medikamente entstehen, rund 9,6 Milliarden Euro. Laut Weltgesundheitsorganisation (WHO) liegt der Fälschungsanteil von Arzneimitteln, die über nicht autorisierte Online-Versandhändler bezogen werden, bei 50 Prozent. Um dagegen anzugehen, werden Medikamentenverpackungen seit 2019 EU-weit mit Sicherheitsmerkmalen versehen. Aktuell verwendete Materialien zur Fälschungssicherheitserkennung, die zum Beispiel in fluoreszierenden Hologrammen zur Anwendung kommen, enthalten in der Regel toxische, anorganische Bestandteile. Hinzu kommt, dass die meisten dieser Techniken binnen 18 Monaten kopiert werden können, nachdem die fluoreszierende Verbindung entschlüsselt wurde.

    Das Team um Gruppenleiter Dr. Felix Löffler aus der Abteilung Biomolekulare Systeme möchte dagegen vorgehen und hat in einer Veröffentlichung im Fachjournal Nature Nanotechnology einen ganz neuen Ansatz für nicht kopierbare Nanomuster vorgestellt: Zunächst wird ein dünner Zuckerfilm, bestehend aus einfachen Monosacchariden, mit einem Laser beschossen. Bei dieser Blitzsynthese „karamellisiert“ der Zucker in Millisekunden und gleichzeitig druckt der Laser auf eine gewünschte Oberfläche „Karamellmuster“. „Das Spannende daran ist, dass sich Mikro- und Nanostrukturen mit beliebigen Mustern kombinieren lassen. Wir haben das am Beispiel von künstlichen Fingerabdrücken gezeigt. Die dabei entstehenden Mikro- und Nanostrukturen sind komplett zufällig und machen das Muster fälschungssicher,“ sagt Dr. Junfang Zhang, Erstautorin der Studie. Dr. Felix Löffler ergänzt: „Jedes Zuckermuster hat eine einzigartige Topographie. Je nach Laserparameter und Zusatzstoffen fluoreszieren die Muster unter dem Scanner in einmaligen Farbabstufungen von Rot, Grün oder Blau.“

    In seinen Versuchen hat das Team eine Nanofilm-Bibliothek mit ca. 2.000 Nanomustern erstellt. Durch zwei Scan-Methoden kann die Mikrostruktur dieser nicht kopierbaren Zuckermuster schnell und unabhängig voneinander ausgelesen werden: Fluoreszenz-Scan und Topographie-Scan. Beide Methoden belegen die nahezu ideale Bitgleichheit, hohe Eindeutigkeit und Zuverlässigkeit der erzeugten Muster. Dies bedeutet, dass die Muster eine sehr hohe Zufälligkeit aufweisen, was wichtig für die Funktion als Kopierschutz ist. Die Kombination beider Methoden verbessert die Fälschungssicherheit (PUF = physical unclonable function). „Mit unserem Verfahren können wir bis zu 10 hoch 63000 verschiedene Varianten auf 1 mm² erzeugen. Zum Vergleich, die Anzahl der Atome im Universum beträgt etwa 10 hoch 89,“ sagt Gruppenleiter Dr. Felix Löffler.


    Wissenschaftliche Ansprechpartner:

    Dr. Felix Löffler - felix.loeffler@mpikg.mpg.de


    Originalpublikation:

    https://doi.org/10.1038/s41565-023-01405-3


    Weitere Informationen:

    https://www.mpikg.mpg.de/6802730/news_publication_20428094_transferred?c=44858 (Pressemitteilung)
    https://www.mpikg.mpg.de/synthetic-array-technologies (weiterführende Informationen zur Forschung von Dr. Felix Löffler)


    Bilder

    Sechs unterschiedliche künstliche Fingerabdruckmuster versehen mit verschiedenen Eigenschaften, um individuelle Fluoreszenz und Topographie sichtbar zu machen. Die Syntheseparameter wurden aus der Nanofilm-Bibliothek abgeleitet.
    Sechs unterschiedliche künstliche Fingerabdruckmuster versehen mit verschiedenen Eigenschaften, um i ...
    Dr. Felix Löffler
    Max-Planck-Institut für Kolloid- und Grenzflächenforschung / Felix Löffler


    Merkmale dieser Pressemitteilung:
    Journalisten, Lehrer/Schüler, Studierende, Wirtschaftsvertreter, Wissenschaftler, jedermann
    Chemie, Physik / Astronomie
    überregional
    Forschungsergebnisse
    Deutsch


     

    Sechs unterschiedliche künstliche Fingerabdruckmuster versehen mit verschiedenen Eigenschaften, um individuelle Fluoreszenz und Topographie sichtbar zu machen. Die Syntheseparameter wurden aus der Nanofilm-Bibliothek abgeleitet.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).