idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
08.06.2023 17:28

Erster ganzheitlicher Einzelzell-Atlas der menschlichen Lunge

Luisa Hoffmann Kommunikation
Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH)

    Kann ein menschliches Organ auf Einzelzellebene kartiert werden? Wie unterschiedlich sind einzelne Zellen zwischen Menschen? Forschende von Helmholtz Munich und ein internationales Team haben sich dieser Herausforderung gestellt und mit Hilfe von Künstlicher Intelligenz (KI) den „Human Lung Cell Atlas“ entwickelt. Dieser klärt über die Diversität einzelner Zellen auf und erlaubt Rückschlüsse auf die Lungenbiologie von gesunden und kranken Organen. Somit ist er der erste Einzelzell-Atlas eines großen Organs. Erstellt wurde er im Rahmen des „Human Cell Atlas“ (HCA), einem weltweiten Gemeinschaftsprojekt zur Kartierung des gesamten Körpers. Die Ergebnisse sind in Nature Medicine veröffentlicht.

    Die in den letzten zehn Jahren entwickelten Einzelzelltechnologien ermöglichen es Forscher:innen Gewebe mit der Auflösung einzelner Zellen zu untersuchen und so Einblicke in die verschiedenen Funktionen der Zellen zu gewinnen, die ein ganzes Organ ausmachen. Die Erstellung eines Einzelzelldatensatzes ist jedoch zeitaufwändig und teuer, und in der Regel werden nur wenige Individuen je Studie aufgenommen. Ein internationales Forscherteam hat nun einen Einzelzell-Atlas der menschlichen Lunge erstellt, indem die Wissenschaftler:innen 49 verschiedene, veröffentlichte und neu erstellte Datensätze kombiniert haben. Dieser zeigt die große Vielfalt an Zellen und Zelltypen in der Lunge auf.

    Prof. Fabian Theis, Leiter des Computational Health Center, Direktor des Instituts für Computational Biology bei Helmholtz Munich und Professor an der Technischen Universität München (TUM), erklärt das Projekt: „Wir haben einen ersten ganzheitlichen Referenzatlas der menschlichen Lunge erarbeitet, der Daten von mehr als hundert gesunden Menschen enthält und zeigt, wie sich die Zellen von Individuen je nach Alter, Geschlecht und Rauchverhalten unterscheiden. Die Anzahl der berücksichtigten Zellen und Personen ermöglicht es uns nun, seltene Zelltypen zu erkennen und neue, noch nicht beschriebene Zellzustände zu identifizieren.“ Dr. Malte Lücken, Forschungsgruppenleiter am Institut für Computational Biology, sowie am Institut für Lung Health & Immunity bei Helmholtz Munich, fügt hinzu: „Ein ganzheitlicher Organ-Atlas benötigt eine Vielzahl an Datensätzen, um die Diversität zwischen Zelltypen und Individuen aufzugreifen, jedoch stellte uns die Kombination von verschiedenen Datensätzen vor eine große Herausforderung. Wir haben eine Benchmarking-Pipeline entwickelt, um die optimale Methode zur Integration aller Datensätze in den Atlas zu finden. Dabei haben wir auf künstliche Intelligenz gesetzt und Wissen und Daten aus nahezu 40 vorhandenen Lungenstudien kombiniert.“

    Der Kern des „Human Lung Cell Atlas“ besteht zwar aus Daten gesunder Lungen, aber die Forscher:innen haben auch Datensätze von mehr als 10 verschiedenen Lungenkrankheiten einbezogen und maschinelles Lernen angewendet für die Projizierung auf die gesunden Daten, um so Krankheitszustände besser analysieren zu können. Dadurch bietet der Atlas ein einzigartiges Bild davon, wie sich kranke Lungen von gesunden unterscheiden, und liefert Hinweise auf potenzielle therapeutische Ziele.

    Prof. Martijn Nawijn, ein weiterer Hauptautor der Publikation und Professor am medizinischen Zentrum der Universität Groningen, erklärt: „Das ist die erste ganzheitliche Studie, um gesunde und erkrankte Lungen zu vergleichen. Wir konnten mit unserer Studie nicht nur das Vorhandensein einer Lungenfibrose bei COVID-19 darlegen, sondern auch identifizieren und definieren, welcher gemeinsame Zellzustand zwischen Lungenfibrose-, COVID-19- und Lungenkrebspatienten zu finden ist. Die Entdeckung dieser gemeinsamen krankheitsassoziierten Zellen eröffnet eine völlig neue Sichtweise auf Lungenkrankheiten. So können neue Behandlungsziele entstehen und es können neue Biomarker festgelegt werden, an denen man die Wirksamkeit dieser Behandlungen ablesen kann. Unsere Ergebnisse deuten zudem darauf hin, dass Therapien, die bei einer Krankheit wirken, auch bei anderen Krankheiten eingesetzt werden können.“

    Kräfte bündeln durch das Zusammenführen von Datensätzen

    Durch die Bündelung und Integration aller bisher gewonnenen Erkenntnisse und Daten haben die Forschenden den ersten integrierten „Human Lung Cell Atlas“ (HLCA) entwickelt: Für jede der 2,4 Millionen Zellen in diesem Atlas wissen sie, welche Gene in welcher Zelle aktiv waren, und erfahren so etwas über die Funktionsweise dieser Zellen. Dies ermöglichte Studien darüber, wie sich die Zellen von Personen je nach Alter, Geschlecht oder Krankheit unterscheiden. Die Erstautorin der Studie Lisa Sikkema vom Institut für Computational Biology und die beteiligten Forscher:innen stellten beispielsweise fest, dass Makrophagen, gereift aus Monozyten (eine bestimmte Art von Immunzellen) bei Krebs, COVID-19 und Lungenfibrose eine ähnliche Genaktivität aufweisen, die wahrscheinlich bei der Narbenbildung in der Lunge bei allen drei Krankheiten eine Rolle spielt. Therapien, die bei einer Krankheit wirken, könnten daher auch bei den anderen Krankheiten wirksam sein. Sikkema bemerkt: „Die Zelltypannotation war das größte Problem bei der Erstellung des ‚Human Lung Cell Atlas‘. Die unterschiedlichen Forschergruppen verwendeten verschiedene Namen für Zelltypen und manchmal wurde auch der gleiche Name für unterschiedliche Zellen verwendet, sodass wir als Team an einer Standardisierung der Daten für den Atlas arbeiten mussten. Der Atlas ist ein erster Schritt auf dem Weg zu einer einheitlichen Annotation der menschlichen Lunge, wodurch die Lungenforschung enger zusammenrückt.“

    Das „Lung Atlas Integration Project” ist ein enormer, kollaborativer Ansatz mit fast 100 Partnern aus mehr als 60 internationalen Instituten von unter anderem dem medizinischen Zentrum der Universität Groningen und der Northwestern University. Das Team ist Teil des „Human Cell Atlas Lung Biological Network“, das aus dem „Chan Zuckerberg Initiative Seed Networks“ für den HCA und dem, von der Europäischen Union finanzierten, Lungennetzwerk „DiscovAIR“ hervorging. Zu Beginn der Pandemie im Jahr 2020 kamen Gruppen aus der Einzelzell-Lungenforschung schnell zusammen und gründeten das HCA „Lung Biological Network“, um COVID-19 zu verstehen, was schlussendlich zur Integration aller Daten führte.

    Eine zentrale Ressource für das Verständnis der menschlichen Lunge

    Die Forscher:innen haben den Atlas vollständig öffentlich zugänglich gemacht. Er soll als zentrale Ressource für Ärzt:innen und Wissenschaftler:innen dienen, die die Lungenbiologie in Gesundheit und Krankheit besser verstehen und weitere Studien entwickeln wollen. Dr. Alexander Misharin, ein weiterer Hauptautor und assoziierter Professor für Medizin an der Northwestern University Feinberg School of Medicine, USA, sagt: „Der ‚Human Lung Cell Atlas‘ bietet eine wichtige Ressource für die wissenschaftliche und medizinische Gemeinschaft. Neue Krankheitsdaten können für Forschende frei zugänglich auf dem HLCA projiziert werden, was die Forschung im Bereich der Lungenbiologie und -krankheiten verändert. Zudem stellt der HLCA als erster vollständiger Referenzatlas eines wichtigen Organs einen Meilenstein auf dem Weg zu einem vollständigen menschlichen Zellatlas dar. Dieser wird unser Verständnis von Biologie und Krankheiten verändern und den Grundstein für eine neue Ära der Gesundheitsversorgung legen.“

    Insgesamt ist der „Human Lung Cell Atlas“ das erste Beispiel dafür, wie groß angelegte Zellatlanten die aktuelle und zukünftige Forschung zu Gesundheit und Krankheit des Menschen voranbringen können.


    Wissenschaftliche Ansprechpartner:

    Prof. Dr. Dr. Fabian Theis, Direktor des Computational Health Centers und Direktor des Institutes für Computational Biology bei Helmholtz Munich, Lehrstuhl für Mathematische Modellierung biologischer Systeme an der Technischen Universität München (TUM)
    Kontakt fabian.theis@helmholtz-munich.de
    Dr. Malte Lücken, Gruppenleiter am Institut für Computational Biology und am Institut für Lung Health and Immunity bei Helmholtz Munich
    Lisa Sikkema, Doktorandin am Institut für Computational Biology bei Helmholtz Munich


    Originalpublikation:

    Sikkema et al. (2023): An integrated cell atlas of the lung in health and disease. Nature Medicine. DOI:10.1038/s41591-023-02327-2


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Wissenschaftler
    Biologie, Informationstechnik, Medizin
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).