idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
14.06.2023 15:53

Climate Change Releases Carbon Stocks Deep Underground

Beat Müller Kommunikation
Universität Zürich

    Subsoils are the largest storehouses for carbon, as well as one of the most important sources of carbon dioxide in the atmosphere. Global warming is accelerating the decomposition of soil humus. It is also affecting the waxy and woody compounds which help plants store carbon in their leaves and roots and were previously thought to be stable. These are the findings of a study conducted by researchers from the University of Zurich’s Department of Geography in the Sierra Nevada National Forest.

    Around a quarter of the world’s carbon emissions are sequestered by forests, grasslands and pasture land. Plants use photosynthesis to store carbon in their cell walls and in the soil. Around half the carbon in soil is located in the deeper layers, more than 20 centimeters deep. But even these lower layers are heating up due to climate change.

    Loss of vital carbon sinks

    The warming climate is causing significant loss of the organic compounds that help plants store carbon in their leaves and roots. Previously, scientists had assumed that complex polymers, which have a more stable molecular structure, were able to withstand natural decomposition for longer and thus store carbon in the soil. However, the UZH-led study has now shown that the compound lignin, which gives plants their stiffness, was reduced by 17%, while waxy compounds called cutin and suberin, which protect plants from pathogens and are found in leaves, stems and roots, were down 30%. Even pyrogenic carbon, the organic compound that remains following a forest fire, was present in significantly reduced amounts.

    The experiments were carried out in the forests of the Sierra Nevada in California. The one-meter deep soil was artificially heated up by 4 degrees Celsius over the course of 4.5 years, following daily and seasonal cycles. This amount of warming is consistent with projections through the end of the century in a business-as-usual climate scenario.

    Consequences for the use of soils to tackle global warming

    These findings have major significance for one of the key strategies in the fight against global warming, namely relying on soils and forests as natural carbon sinks. As part of this strategy, crop plants with particularly deep roots and cork-rich biomass are being developed. “Until now it was assumed that this would keep CO2 locked in the ground,” says Michael W. Schmidt, professor of geography and last author of the study. “But our results show that all the constituents of soil humus will decrease at the same rate, simple chemical compounds and polymers alike. If these initial observations are confirmed in longer-term field experiments, the consequences are alarming.” If the forest floor loses humus on a large scale and carbon is thus released as CO2, the pace of global warming will be accelerated even more. “Our goal must be to stop emissions at the source,” says Schmidt.


    Wissenschaftliche Ansprechpartner:

    Prof. Michael W. Schmidt
    Department of Geography
    University of Zurich
    Phone +41 44 63 55140
    E-mail: michael.schmidt@geo.uzh.ch


    Originalpublikation:

    Zosso, C.U., Ofiti, N.O.E., Torn, M.S. et al. Rapid loss of complex polymers and pyrogenic carbon in subsoils under whole-soil warming. Nature Geoscience. 16 344 348 23 2023 Doi: 10.1038/s41561-023-01142-1.


    Weitere Informationen:

    https://www.news.uzh.ch/en/articles/media/2023/Boeden.html Press release


    Bilder

    Researchers from the University of Zurich take soil samples in the Sierra Nevada National Forest.
    Researchers from the University of Zurich take soil samples in the Sierra Nevada National Forest.
    Michael W.I. Schmidt
    Michael W.I. Schmidt


    Merkmale dieser Pressemitteilung:
    Journalisten
    Chemie, Geowissenschaften, Meer / Klima, Tier / Land / Forst, Umwelt / Ökologie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Englisch


     

    Researchers from the University of Zurich take soil samples in the Sierra Nevada National Forest.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).