idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
05.07.2023 15:42

BESSY II: Was Ionen durch Polymermembranen treibt

Dr. Antonia Rötger Kommunikation
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

    Photoelektrolyseure und Elektrolysezellen können grünen Wasserstoff oder fossilfreie Kohlenstoffverbindungen erzeugen – allerdings benötigen sie Ionenaustausch-Membranen. Ein HZB-Team hat nun in einem hybriden Flüssiggas-Elektrolyseur an der Röntgenquelle BESSY II den Transport von Ionen durch die Membran untersucht. Anders als erwartet werden Ionen dabei kaum durch elektrische Felder, sondern durch Konzentrationsunterschiede angetrieben: Die Diffusion ist also der entscheidende Prozess. Diese Erkenntnis könnte bei der Entwicklung hocheffizienter und deutlich umweltfreundlicherer Membranmaterialien helfen.

    Ionenaustausch-Membranen werden in (Photo)elektrolyseuren, Brennstoffzellen und Batterien benötigt, um Ionen zu trennen und die gewünschten Prozesse zu ermöglichen. Synthetisch produzierte Polymer-Membranen wie NAFION sind dabei besonders effizient, aber leider nicht abbaubar. In der Europäischen Union wird derzeit ein Verbot solcher "Ewigkeits-Chemikalien" diskutiert, die Entwicklung geeigneter Alternativen ist jedoch eine Herausforderung. Daher ist es wichtig, besser zu verstehen, warum NAFION und andere etablierte Polymermembranen so gut funktionieren.
    Ein Team um Dr. Marco Favaro vom HZB-Institut für Solare Brennstoffe hat diese Frage nun mit einer speziellen Art von Elektrolysezelle untersucht. In diesem Zelltyp sitzt die Membran an der Außenwand und steht so sowohl mit dem flüssigen Elektrolyten als auch mit einer gasförmigen äußeren Umgebung in Kontakt. Je nach Polarität des angelegten Potenzials wirkt die Membran entweder als Anode oder als Kathode. Dieser hybride Flüssiggas-Elektrolyseur gilt als besonders vorteilhaft für die elektrochemische Umwandlung von CO2, da in der Gasphase höhere CO2-Konzentrationen möglich sind als in wässrigen Lösungen.
    Für die Studie verwendeten Favaro und sein Team handelsübliche Ionenaustauschmembranen in Kontakt mit einem Modellelektrolyten wie Natriumchlorid (NaCl) in Wasser. Der Gasphase wurde Wasserdampf zugeführt. Die Migration von Natrium- und Chloridionen durch die Membranen konnte mit Röntgenphotoelektronenspektroskopie bei Umgebungsdruck (AP-HAXPES) an der SpAnTeX-Endstation an der KMC-1-Beamline von BESSY II untersucht werden.
    „Wir hatten eigentlich erwartet, dass die Dynamik der Ionen durch die elektrischen Felder zwischen Anode und Kathode des Elektrolyseurs bestimmt wird, und dass die Elektromigration der Hauptfaktor ist", sagt Marco Favaro.
    Die Analyse der Daten zeigte jedoch das Gegenteil: Elektromigration spielt kaum eine Rolle, die Ionen diffundieren einfach durch die Membran. Die Daten konnten mit einem Diffusionsmodell numerisch perfekt simuliert werden. „Wir folgern daraus, dass Ionen die Polymermembranen in diesen Elektrolyseuren durchdringen, und zwar aufgrund von Sprüngen, die durch die in den Membranen vorhandenen ionisierten funktionellen Gruppen vermittelt werden. Da außerdem auch Wasser durch das Polymer diffundiert, werden die Ionen "mitgeschleppt", erklärt Favaro.
    Diese Ergebnisse sind aus einer Reihe von Gründen interessant: Denn solche hybriden Elektrolyseure ermöglichen es, CO2 in wertvolle Chemikalien umzuwandeln, die sonst nur aus fossilen Brennstoffen gewonnen werden können. Zu verstehen, wie diese Elektrolyseure funktionieren, hilft auf dem Weg zur Dekarbonisierung der Wirtschaft. Dabei sind die Ionenaustausch-Membranen eine Schlüsselkomponente, die bisher verwendeten Polymerverbindungen sind jedoch nicht abbaubar. Es ist daher überaus wichtig, die relevanten Triebkräfte von Transportprozessen zu verstehen, um neue Membranmaterialien zu entwickeln, die effizient und umweltfreundlich sind. Favaro will dieses Projekt nun am HIPOLE vorantreiben, dem neuen Helmholtz-Institut in Jena, das sich auf die Entwicklung von neuen Polymermaterialien für Energietechnologien konzentriert.


    Wissenschaftliche Ansprechpartner:

    Dr. Marco Favaro: marco.favaro@proton.me.


    Originalpublikation:

    https://doi.org/10.1039/D3TA02050A
    Journal of Materials Chemistry A.

    In situ investigation of ion exchange membranes reveals that ion transfer in hybrid liquid/gas electrolyzers is mediated by diffusion, not electromigration

    Maryline Ralaiarisoa, Senapati Sri Krishnamurti, Wenqing Gu, Claudio Ampelli, Roel van de Krol, Fatwa Firdaus Abdi and Marco Favaro


    Bilder

    Merkmale dieser Pressemitteilung:
    Journalisten, Studierende, Wirtschaftsvertreter, Wissenschaftler, jedermann
    Chemie, Energie, Physik / Astronomie, Werkstoffwissenschaften
    überregional
    Forschungs- / Wissenstransfer, Forschungsergebnisse
    Deutsch


     

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).