idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instanz:
Teilen: 
07.08.2023 10:04

Die Quanten-Lawine

Dr. Florian Aigner PR und Marketing
Technische Universität Wien

    An der TU Wien gelang es, ein eigentlich sehr instabiles System aus vielen Quantenteilchen stabil zu halten und dann seine Energie gezielt auf einmal freizusetzen.

    Es sind ganz besondere Diamanten, mit denen an der TU Wien gearbeitet wird: Ihr Kristallgitter ist nicht perfekt regelmäßig, es enthält zahlreiche Defekte. An Stellen, an denen sich in einem perfekten Diamanten zwei benachbarte Kohlenstoff-Atome befinden würden, sitzt ein Stickstoffatom, der zweite Platz bleibt frei. Mit Hilfe von Mikrowellen kann man diese Defekte zwischen zwei verschiedenen Zuständen hin und her schalten – einem Zustand höherer Energie und einem Zustand niedrigerer Energie. Das macht sie zu einem interessanten Werkzeug für verschiedene Quantentechnologien, etwa für neuartige Quantensensoren oder Bauteile für Quantencomputer.

    Nun gelang es, diese Defekte so präzise zu kontrollieren, dass man damit einen spektakulären Effekt auslösen kann: Alle Defekte werden in den Zustand hoher Energie gebracht, in dem sie einige Zeit lang verharren, bis man dann mit einem winzig kleinen Mikrowellen-Puls die gesamte Energie freisetzt und alle Defekte gleichzeitig in den Zustand niedriger Energie wechseln – ähnlich wie bei einem Schneefeld, auf dem ein winzig kleiner Schneeball eine Lawine auslöst und die gesamte Schneemasse gleichzeitig ins Tal donnert.

    Atom-Spins und Mikrowellen

    „Die Defekte im Diamant haben einen Spin – einen Drehimpuls, der entweder nach oben oder nach unten zeigt. Das sind die zwei möglichen Zustände, in denen sie sich befinden können“, sagt Wenzel Kersten, Erstautor der aktuellen Publikation, der in der Forschungsgruppe von Prof. Jörg Schmiedmayer (Atominstitut, TU Wien) derzeit an seiner Dissertation arbeitet.

    Mit Hilfe eines Magnetfelds kann man erreichen, dass zum Beispiel der Zustand „Spin nach oben“ einer höheren Energie entspricht als „Spin nach unten“. In diesem Fall werden sich die meisten Atome im Zustand „Spin nach unten“ befinden – sie streben normalerweise in den Zustand niedriger Energie, wie eine Kugel in einer Schüssel, die normalerweise nach unten rollt.

    Mit ausgeklügelten technischen Tricks kann man aber eine sognannte „Inversion“ erzeugen – man bringt die Defekte dazu, sich alle im Zustand höherer Energie einzufinden. „Man verwendet dafür Mikrowellenstrahlung, durch die man die Spins zunächst in den gewünschten Zustand bringt, dann verändert man das äußere Magnetfeld so, dass die Spins gewissermaßen in diesem Zustand eingefroren werden“, erklärt Prof. Stefan Rotter (Institut für Theoretische Physik, TU Wien), der den theoretischen Teil der Forschungsarbeit leitete.

    Eine solche „Inversion“ ist instabil. Die Atome könnten prinzipiell spontan ihren Zustand wechseln – ähnlich als würde man einen Besenstiel balancieren, der prinzipiell spontan in irgendeine Richtung umkippen kann. Aber das Forschungsteam konnte zeigen: Durch die extrem präzise Kontrolle, die durch an der TU Wien entwickelte Chiptechnologie möglich wurde, kann man die Spins der Atome für etwa 20 Millisekunden stabil halten. „Für quantenphysikalische Verhältnisse ist das eine gewaltige Zeitspanne. Das ist ungefähr hunderttausendmal so lange wie es dauert, diesen energiereichen Zustand zu erzeugen oder ihn wieder zu entladen. Das ist, als hätte man einen Handyakku, der in einer Stunde aufgeladen wird und dann zehn Jahre lang seine Energie vollständig hält“, sagt Jörg Schmiedmayer.

    Winzige Ursache – großer Effekt

    Man kann während dieser Zeit die Zustandsänderung aber gezielt herbeiführen – und zwar durch eine sehr kleine, schwache Ursache, etwa einen Mikrowellenpuls von minimaler Intensität. „Er bringt ein Atom dazu, seinen Spin zu wechseln, woraufhin benachbarte Atome ebenfalls ihren Spin wechseln – so entsteht ein Lawineneffekt. Die gesamte Energie wird freigesetzt, und zwar in Form eines Mikrowellenpulses, der rund hundert Milliarden mal stärker ist als jener, mit dem man den Effekt ursprünglich ausgelöst hat“, erklärt Stefan Rotter. „Das ist im Verhältnis so, als würde eine einzige Schneeflocke ein Schneebrett mit einigen hundert Tonnen Gewicht auslösen.“

    Das bietet viele interessante Möglichkeiten: Man kann auf diese Weise etwa schwache elektromagnetische Pulse verstärken, man könnte das für spezielle Sensoren nutzen, man kann damit eine Art „Quanten-Batterie“ herstellen, mit der sich auf Quantenebene eine gewisse Energiemenge aufbewahren und gezielt freisetzen lässt.


    Wissenschaftliche Ansprechpartner:

    Prof. Stefan Rotter
    Institut für Theoretische Physik
    TU Wien
    Wiedner Hauptstraße 8–10, 1040 Wien
    +43 1 58801 13618
    stefan.rotter@tuwien.ac.at
    Prof. Jörg Schmiedmayer
    Atominstitut, Vienna Center for Quantum Science and Technology (VCQ)
    Technische Universität Wien
    +43 1 58801 141888
    schmiedmayer@AtomChip.org
    Dipl.-Ing. Wenzel Kersten
    Atominstitut, Vienna Center for Quantum Science and Technology (VCQ)
    Technische Universität Wien
    +43 1 58801 141867
    wenzel.kersten@tuwien.ac.at


    Originalpublikation:

    W. Kersten et al., Triggered Superradiance and Spin Inversion Storage in a Hybrid Quantum System, Phys. Rev. Lett. 131, 043601
    https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.043601


    Bilder

    Das Herzstück des Experiments, der Mikrowellen-Resonator, befindet sich im Zentrum der ringförmigen Magnetfeld-Spulen
    Das Herzstück des Experiments, der Mikrowellen-Resonator, befindet sich im Zentrum der ringförmigen ...
    TU Wien
    TU WIen

    Der Mikrowellen-Resonator besteht aus zwei supraleitenden Chips in einer Sandwich Konfiguration, mit dem kleinen Diamant Steinchen in der Mitte.
    Der Mikrowellen-Resonator besteht aus zwei supraleitenden Chips in einer Sandwich Konfiguration, mit ...
    TU WIen
    TU Wien


    Merkmale dieser Pressemitteilung:
    Journalisten, jedermann
    Physik / Astronomie
    überregional
    Forschungsergebnisse, Wissenschaftliche Publikationen
    Deutsch


     

    Das Herzstück des Experiments, der Mikrowellen-Resonator, befindet sich im Zentrum der ringförmigen Magnetfeld-Spulen


    Zum Download

    x

    Der Mikrowellen-Resonator besteht aus zwei supraleitenden Chips in einer Sandwich Konfiguration, mit dem kleinen Diamant Steinchen in der Mitte.


    Zum Download

    x

    Hilfe

    Die Suche / Erweiterte Suche im idw-Archiv
    Verknüpfungen

    Sie können Suchbegriffe mit und, oder und / oder nicht verknüpfen, z. B. Philo nicht logie.

    Klammern

    Verknüpfungen können Sie mit Klammern voneinander trennen, z. B. (Philo nicht logie) oder (Psycho und logie).

    Wortgruppen

    Zusammenhängende Worte werden als Wortgruppe gesucht, wenn Sie sie in Anführungsstriche setzen, z. B. „Bundesrepublik Deutschland“.

    Auswahlkriterien

    Die Erweiterte Suche können Sie auch nutzen, ohne Suchbegriffe einzugeben. Sie orientiert sich dann an den Kriterien, die Sie ausgewählt haben (z. B. nach dem Land oder dem Sachgebiet).

    Haben Sie in einer Kategorie kein Kriterium ausgewählt, wird die gesamte Kategorie durchsucht (z.B. alle Sachgebiete oder alle Länder).